
Seamless Integration of Biological Applications within a Database Framework

Thodoros Topaloglou, Anthony Kosky and Victor Markowitz

Data Logic, A Division of Gene Logic Inc
2001 Center Street, Suite 600, Berkeley, CA 94704
Email: {thodoros, anthony, victor}@genelogic.com

Tel: (510) 649 3444, Fax: (510) 649 3449

Abstract
There are more than two hundred biological data
repositories available for public access, and a vast number
of applications to process and interpret biological data. A
major challenge for bioinformaticians is to extract and
process data from multiple data sources using a variety of
query interfaces and analytical tools.
In this paper, we describe tools that respond to this
challenge by providing support for cross-database queries
and for integrating analytical tools in a query processing
environment. In particular, we describe two alternative
methods for integrating biological data processing within
traditional database queries: (a) “light-weight” application
integration based on Application Specific Data Types
(ASDTs) and (b) “heavy-duty” integration of analytical
tools based on mediators and wrappers. These methods are
supported by the Object-Protocol Model (OPM) suite of
tools for managing biological databases.

Introduction

In order to perform high-throughput analysis of biological
data, it is necessary to access and process information from
a variety of data sources using standard and proprietary
query interfaces and analytical tools. These data sources
may be heterogeneous, and distributed over intranets or the
internet. This problem is compounded by the large number
of public biological data repositories and the diversity of
applications that are used to access, filter, interpret and
combine these data. Although existing database and Web-
based technologies offer tools for organizing and searching
remote data repositories on a stand-alone basis, they do not
properly address the problem of database and application
integration. A solution to this problem must also address
the semantic heterogeneity of different data sources, as
well as the complexity of collaborative and efficient access
to multiple data sources in a distributed environment.

To illustrate these problems, let us consider the scenario of
a high-throughput sequencing laboratory that produces
sequence fragments which need to be analyzed, labeled,

Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

identified, and finally assigned a gene association.
Automating this process involves: (a) accessing a LIMS
database for new sequencing trace objects or fragments, (b)
passing each fragment through the various steps of an
analysis pipeline for base calling, trimming and labeling,
(c) using a homology search (e.g. BLAST) against one or
more public databases to identify homologous sequences,
and finally (d) accessing public archival databases, such as
the Genome Database (GDB) or the Genome Sequence
Database (GSDB), to retrieve genes with which its
sequence might be associated. Similar data access and
application integration requirements are encountered in a
gene-based drug discovery process. These requirements
cannot be satisfied easily using existing database
technologies. For example, a sequence fragment might be
represented using a complex data type (binary) that is not
supported by traditional relational DBMS technologies,
and manipulated with applications such as PHRED and
PHRAP for base calling and trimming. The contents of
more than one database might need to be queried together
in a semantically meaningful manner. The output of a
homology search might need to be processed in order, for
example, to extract high scoring hits.

In this paper, we describe tools that provide support for
seamless integration of biological applications within a
database framework. These tools have been developed in
the context of the Object Protocol Model (OPM) and
involve using advanced query processing methods for
integrated data access and biological computation. These
tools allow the extension of database query interfaces to
support (i) transparent integration of applications within a
single database query, (ii) queries across multiple
databases, and (iii) query interfaces on top of applications
such as homology searches.

The rest of this paper is organized as follows. In the
following two sections, we briefly review OPM and the
OPM data management tools, and we present the
architecture of the OPM database and application
integration platform. Then, we describe two different
approaches to application integration in databases. Finally,
we review related work and present concluding remarks.

Background

Our approach to exploring biological databases is based on
the Object-Protocol Model (OPM) [Chen and Markowitz,
1995]. OPM is an object-oriented data model used for
specifying the structure of heterogeneous databases and
defining queries against these databases in an abstract,
uniform and consistent way.

The “object” part of OPM follows the ODMG standard for
object-oriented data models [Cattell, 1996]. Objects in
OPM are uniquely identified by object identifiers (oids),
are qualified by attributes, and are classified into classes.
Classes are organized in subclass-superclass hierarchies
and may be grouped into clusters.

Attributes may be simple or consist of a tuple of simple
attributes. Attributes can be single-valued, set-valued or
list-valued and can be required to have non-null values. If
the value class of an attribute is a system-provided data
type, or a controlled-value class of enumerated values or
ranges, then the attribute is said to be primitive. If an
attribute takes values from an object class or a union of
object classes, then it is said to be abstract.

OPM supports the specification of derived attributes using
derivation rules involving arithmetic expressions,
aggregate functions such as min, max, sum, avg, count, or
compositions of attributes and inverse attributes. OPM also
supports derived subclasses and derived superclasses. A
derived subclass is defined as a subclass of one or more
object classes with an optional derivation condition. A
derived superclass is defined as a union of two or more
object classes.

Figure 1 shows part of the OPM schema for a simplified
example database, Biotech Laboratory Database (biotechdb
for short), underlying the high-throughput sequencing
laboratory described earlier. The schema is represented in
a diagrammatic notation that may be browsed using the
Java-based OPM Schema Browser. This figure shows the
object class DNASequence with its attributes. For example,
fragment and parent are abstract attributes with value
classes Fragment and DNASequence respectively, while
accession and traceFile are primitive attributes. The
attribute Flength is a tuple attribute with components
including cloningMethod, ORFStart, ORFEnd and
ORFLength. Attributes gel and expressionProfile are
derived attributes. The class DNASequence models

Figure 1: Browsing Classes using the OPM Schema Browser

sequence objects that are generated as a result of a
sequencing experiment.

In addition to object classes, OPM supports a protocol
class construct for modeling scientific experiments. A
discussion of the protocol classes is beyond the scope of
this paper.

OPM has been extended with Application Specific Data
Types (ASDTs). ASDTs are used to model complex,
multimedia data types such as DNA sequences, protein
structures, genetic maps and gel images. ASDTs are further
discussed in Section 4.

The OPM Data Management tools provide facilities for
rapidly developing, documenting, and querying biological
and other databases [Data Logic, 1998]. The OPM
Database Development tools provide facilities for rapidly
developing databases using commercial relational database
management systems (DBMSs). The OPM Retrofitting
tools provide facilities for constructing OPM views for
relational and flat-file databases which were not originally
developed using the OPM tools. The OPM Database Query
tools support querying and exploring databases via OPM
views using a high-level query language or Web-based

graphical interfaces. The OPM Data Entry tools provide a
generic way of entering data into OPM based relational
databases. The OPM Database and Application integration
tools are discussed in the following sections.

The OPM Query and Application Integration
Architecture

The OPM Multidatabase Query System (MQS) provides
support for querying and exploring multiple heterogeneous
databases that have native or retrofitted OPM views.
Queries against MQS are expressed in the OPM
multidatabase query language, OPM-MQL, which is
similar to the ODMG standard for object-oriented query
languages, OQL. Queries can be submitted to MQS either
using a command-line interface, using a CORBA API and
wrappers, or using Web-based graphical query tools.

A Database Directory is used to store and coordinate
information on the databases, DBMSs, inter-database links
and Application Specific Data Types (ASDTs) in a
multidatabase system. The Database Directory also
provides access to meta-data and system information for
other applications via a CORBA API.

Figure 2. The OPM MQS Architecture

MQS uses a client-server architecture that supports
multiple DBMSs and data sources, and allows a
multidatabase system to be dynamically reconfigured with
new databases, DBMSs and ASDTs. Servers for each
DBMS in the system handle database-specific query
optimizations and evaluate single-database queries.

The main components of an OPM Multidatabase Query
System are shown in Figure 2.

� A central Multidatabase Query Processor takes OPM-
MQL queries and translates them into expressions in a
nested-relational algebra [Buneman et al, 1995b]. This
expression involves embedded single database queries.
The Multidatabase Query Processor evaluates the
expression using a combination of a local query engine
and OPM Database Servers.

� OPM Database Servers provide database-specific
functions used in the translation and optimization of
OPM-MQL queries, evaluate single-database queries,
and return query results as OPM data structures.

� OPM ASDT Servers perform methods for OPM
ASDTs and return method results as OPM data
structures.

� OPM DBMS Servers create and manage the OPM

Database Servers. The Multidatabase Query Processor
sends requests to the appropriate DBMS server to
provide access to an OPM database server associated
with a given database. The DBMS Server then checks
whether a server for the database is already running,
starts up a database server process if necessary, and
returns the address of the database server.

� The Multidatabase Directory stores information about
the databases, DBMSs and ASDTs involved in a
federation, and, also about the inter-database links,
representing known connections between databases.

More details of the Multidatabase Query System can be
found in [Kosky et al, 1998].

Figure 3 illustrates a multidatabase query. The query
retrieves the name and the GSDB accession number for
each of the top BLAST hits stored as annotation of a
DNASequence in biotechdb. This query has been
graphically composed using the Java-based multidatabase
query constructor shown in the top section of the figure.
The top left window lists the names of all the databases in
the multidatabase system. The query is specified by first
selecting the database and the class that eventually become
the root of the query tree; then the query tree is built by
selecting a series of retrieval attributes, abstract attributes
or links. Abstract attributes and links specify “joins” within

Figure 3. A Multidatabase Query Example

the context of a single database or across databases,
respectively.

Inter-database links are schema-level constructs
representing known, meaningful connections between
databases, while hiding the many low-level details required
for connecting the databases. In this example, a link named
DNASeq_Hits_as_in_GSDB, encodes some conditions
under which biotechdb DNASequence objects would be
related with GSDB Sequence objects. These conditions
may be arbitrarily complex, incorporating joins, data
manipulations, and even references to additional databases
and classes. Each link is described by an entry in the
database directory, including the link conditions. The entry
for the example link might be:

LINK DNASeq_Hits_as_in_GSDB
 FROM DB biotechdb
 FROM CLASS DNASequence
 TO DB gsdb
 TO CLASS Sequence
 FROM VARIABLE @_bs
 TO VARIABLE @_ps
 CONDITION
 WHERE @_bs.blastHits.accession =
 @_ps.ic_accession ;

The bottom window in Figure 3, displays the OPM-MQL
query generated by the graphical query tool and the results
of evaluating the query.

Integration through Application Specific Data
Types

The Application Specific Data Type (ASDT) concept in
OPM is used to model complex, multimedia data types
such as DNA sequences, maps or gel images. For example,
the following OPM class represents gel objects in
biotechdb. A gel object is qualified by a number of
attributes, including: a sample set; the project to which it
belongs; the plate it is loaded from; the processing date and
the person who conducted the experiment; the name of the
directory where the gel data is stored; and an image that
holds its content. The attribute image takes as its value an
instance of the ASDT GelImageASDT.

OBJECT CLASS Gel
ID: gelId
ATTRIBUTE gelId: INTEGER REQUIRED
ATTRIBUTE samples: set-of Sample REQUIRED
ATTRIBUTE project: Project REQUIRED
ATTRIBUTE gelPlateId: INTEGER REQUIRED
ATTRIBUTE preparedBy: Person REQUIRED
ATTRIBUTE prepareTime: TIMESTAMP OPTIONAL
ATTRIBUTE datadir: VARCHAR(128) OPTIONAL
ATTRIBUTE image: GelImageASDT OPTIONAL
ATTRIBUTE comments: VARCHAR(255) OPTIONAL

Primitive attributes are easily handled by databases
because their data types and most of the standard
operations on them are supplied directly by the underlying
DBMS. Complex data types such as images are not
handled adequately by pure relational database
management systems because of the limitations of the data
types provided and SQL’s lack of support for user-defined,
type-specific operations. The ASDT construct allows
OPM databases to treat complex data types as primitive
types; that is, to store, retrieve and perform content-based
operations on complex data such as gel images. For
example, one can apply complex image processing
algorithms to a gel image with the same ease as adding two
numbers.

An ASDT's methods model the application specific
computations that are applicable to instances of the ASDT.
Methods support type-specific or content-based
manipulations of complex objects. For example, an image
object could be cropped, displayed or searched for a
specific pattern of pixel intensities at certain positions. In
the OPM system, any ASDT instance is represented as an
atomic value that can be explored through its methods.
Method calls can be specified within an OPM query, and
are recognized by the query processor, which will call the
appropriate application server to execute them. Methods
can appear in the SELECT, FROM, and WHERE clauses of
an OPM query. For example, an OPM query that retrieves
a set of gel images satisfying certain criteria, and cuts out
and displays the first lane (perhaps the quality control lane)
of the images, might be:

SELECT label = @g.gelId,
 displ = @g.image.get_lane(1).display()
FROM @g IN Gel
WHERE @g.preparedBy.initials = “TT” AND

 @g.preparedTime = “7/23/1998” AND
 @g.image.avg_intensity() < 500 ;

Without ASDTs, the above example would require us to
store images in the database as binary objects, (or the
references to them), and develop a client application
program that queries the database to select a set of images
and then applies proper algorithms to each member of the
set. The pitfalls of this approach include network traffic
overhead, since the entire image files need to be shipped
from the server to the client, and client programs that do
the bulk of the work and need to be maintained for a
number of client sites.

Another alternative would be to preprocess all the images
ahead of time, and extract explicit attributes for average
intensity, lanes, etc., that are stored in the database. This
alternative also has disadvantages: the schema and
database need to reflect the types of data analysis
employed at a given time, and frequent changes of the
analysis will cause schema/data revisions and version

management overhead. The advantage of using ASDTs is
that data processing is done under the supervision of the
OPM query processor. This processing takes place on the
server side.

ASDTs are comparable to data blades, cartridges and
extenders supported by Object-Relational Database
Management Systems (ORDBMSs), but are a middleware
solution, which may utilize the facilities provided by an
ORDBMS, or provide object-relational functionality on top
of pure relational databases.

The design of an OPM ASDT consists of three stages:

1. Defining the ASDT using the OPM specification
language. The description of an ASDT requires the
identification of its methods, and specifying the
signatures (interfaces) for each method.

2. Finding or developing code that implements the
methods.

3. Building a CORBA server for the ASDT that
functions as the method execution engine. The MQS
query processor dispatches method calls for the ASDT
to this server. This last step is supported by code
templates provided by the OPM application
development environment, where the application
developer can plug-in custom code.

In the following example, we demonstrate the development
and use of SeqASDT, an ASDT which provides sequence
analysis utilities to the Sequence class of database seqdb
(also part of the mutlidatabase system of Figure 3). The
following statements illustrate the ASDT declaration in
OPM, and the schema definition of class Sequence. The
ASDT declaration includes the underlying data type for its
instances, its storage mode and a complete enumeration of
its methods, including their signatures. In this example
sequence ASDT instances are stored in the database as
long strings. Alternatively, they could be stored internally

as text large objects (OPM_BLOB/TEXT), or outside of the
database in which case the underlying data type would be a
string storing a “reference” to the external object.

APPLICATION SPECIFIC DATA TYPE seqASDT
 DATATYPE: VARCHAR(2000)
 STORED: INTERNAL
 METHOD toFasta
 SIGNATURE: "string toFasta(string,string)"
 LANGUAGE: "C++"
 DESCRIPTION: "translates sequences to

Fasta format"
 METHOD blastn1
 SIGNATURE: "string blastn1(string)"
 LANGUAGE: "C++"
 DESCRIPTION: "blasts sequence against the

db specified by arg1"

OBJECT CLASS Sequence
 ID: seqID
 ATTRIBUTE seqID: VARCHAR(100) REQUIRED
 ATTRIBUTE sequence: seqASDT OPTIONAL
 ATTRIBUTE dateIn: DATETIME OPTIONAL
 ATTRIBUTE rawSeq: VARCHAR(2000) OPTIONAL

Methods toFasta and blastn1 are implemented using a
programming language of choice, and added to the
SequenceASDT server. This server communicates with the
MQS query processor via a CORBA interface.
Subsequently, the server needs to be registered in the MQS
database directory. This is done by adding an entry, such as
the following, to the database directory file:

ASDT_SERVER seqASDT
 SERVER "sequenceAsdtServ2"
 HOST "pepe.genelogic.com"
 COMMENT "server implements seqASDT methods"

When a method call occurs inside an OPM query, the MQS
query processor evaluates the method-free query using the
appropriated database servers, and then calls the ASDT
server to execute method calls based on the intermediate
query results. Below, we illustrate a method call within a
query to BLAST all the sequences in the database against a
blast-able database. Extending queries with the capability
to call user-defined methods allows us to integrate

Figure 4: Query form containing a method call

application specific computations in queries, such as
calling blast on a set of sequence objects directly as they
are retrieved from the database. Figure 4 shows the single
class query form generated automatically by the OPM
query tools, extended with methods and fields to specify
method arguments. The bottom part of the query form
provides a field to specify the parameters for the method
call.

ASDTs extend the OPM type system, and allow
applications to be called from inside OPM queries.
However there are cases where one would like to treat
entire applications as query-able databases returning results
that can be treated as OPM query objects. This approach to
application integration is studied in the following section.

Application Servers

OPM provides support for “wrapping” biological
applications of interest into application servers that can be
included into an OPM multidatabase query system. In this
section we describe an example of this mechanism as it
applies to homology search engines.

An application server for homology search engines allows
accesses to databases and homology searches to be
integrated into a single OPM query. An example of such a
query is: “retrieve a fragment from the biotechdb and find
all its homologous sequences in dbEST that are longer than

300 base pairs and have a p-value less than .001”. In order
to process this query, we must first query biotechdb, then
pass the query results through a homology search engine
such as BLAST, and finally apply the remaining query
conditions to the BLAST results. The OPM BLAST server,
using BLAST as the back-end search engine, allows us to
perform homology searches from within an OPM query,
and to perform further processing (e.g., selecting or
projecting) on BLAST output data. Note that, in addition to
being part of a multidatabase system, OPM application
servers can be directly accessed using the OPM query
language. e.g., using the BLAST server, one may blast a
specific sequence against a blast-able database and retrieve
only accession ids and p-values of hits with length larger
than 1000 base pairs.

The development of a server for an application like
BLAST involves modeling the application as an OPM
database. This includes modeling a BLAST call, as well as
the output of the call, as OPM object classes. The
difference between such a server and a database server is
that the database server relies on a database engine to
access data, while for the BLAST server, the data access is
supported by one of the BLAST programs. A BLAST
application needs to be “wrapped” in order to make an
interface that supports the OPM query language. Building
such an interface requires defining a mapping between the
constructs of the BLAST OPM view and the retrieval
operations of the underlying BLAST application. The

Figure 5: Multidatabase query addressing the OPM BLAST server

result is a server that takes OPM queries, generates a
BLAST call, intercepts the results, fits them in an OPM
schema, and applies further query processing operations to
them.

The example query mentioned above, can be expressed by
the following OPM-MQL query:

SELECT l = @r.fragId,
a = @bo.hits.accessor

FROM @r in biotechdb:Fragments
@bc in blast20:Blast_Call
@bo in bc.output

WHERE @r.finished = “today” AND
@bc.querySeq = @r.sequence AND
@bc.command = “blastn” AND
@bc.dataSource = “dbEST” AND
@bo.hits.length < 300;

This multidatabase query can be further refined. For
example, several of the WHERE clause conditions dealing
with parameters of the BLAST call can be grouped into an
inter-database link, thus hiding the details of the BLAST
call:

LINK toBlast
 FROM DB biotechdb
 FROM CLASS Fragment
 TO DB blast20
 TO CLASS Blast_Call
 FROM VARIABLE @f_local
 TO VARIABLE @c_blast
 COMMENT “Hide complexity of a blast call”
 CONDITION
 WHERE
 @f_local.sequence = @c_blast.query and
 @c_blast.command = “blastn” and
 @c_blast.dataSource = “dbEST”;

Such a link can be used in a query like a conventional
attribute, making the access to the BLAST server

transparent to the user. For example, using inter-database
links, the previous query could be written:

SELECT l = @r.fragId,
a = @bo.hits.accessor

FROM @r in biotechdb:Fragments
@bo in r.toBlast.output
@h = @bo.summary.sequence

WHERE @r.finished = “today” AND
@bo.hits.length > 300;

The query evaluation steps are as follows. First, a single
database query is evaluated by the OPM query server for
biotechdb. Second, for each retrieved sequence, a BLAST
call/query is created and submitted to the BLAST server.
Third, the server invokes the BLAST program and creates
an output that fits the OPM schema for BLAST results,
which is subsequently passed back to the MQS query
processor. Finally, post-processing takes place in MQS to
evaluate predicates on the BLAST results.

Figure 5 illustrates how the same query can be expressed
using the OPM Java query constructor tool and the multi-
database query system introduced in Figure 3. Figure 6

presents sample results for the query, which clearly
demonstrate the advantages of applying query processing
to BLAST output. Instead of the long, incomprehensible
BLAST reports for each fragment, the BLAST server
query only displays qualified and relevant components of
the output.

Conclusions

In this paper, we described tools for seamless integration of
biological applications into a database framework. In
particular, we described two alternatives: (a) a “light-
weight” application integration based on Application

Figure 6: Results of the multidatabase query from Figure 5

Specific Data Types (ASDTs) and (b) a “heavy-duty”
integration of analytical tools based on mediators and
wrappers. These methodologies were developed in the
context of the OPM Multidatabase Query System, a
middleware architecture that allows queries across multiple
data sources and applications.

The two methodologies address quite different application
integration needs. The “light-weight” approach extends the
query language with user-defined functions that allow us to
perform data-specific computations from within queries.
The extension capability is built inside the query processor,
therefore the amount of effort needed to develop a new
ASDT, and hence perform application integration, is
minimal.

The “heavy-duty” integration provides fine granularity
control over input parameters and access to the output of
certain applications. In this approach, the application
programs are turned into “servers” able to respond to
queries. In addition, application servers participate in the
query planning and optimization performed by the MQS
query processor, while ASDTs do not. The effort involved
in developing an application server is substantially larger
than that necessary to implement an ASDT.

Few systems attempt to support comprehensive access to
multiple heterogeneous biological data sources. Some of
them, including SRS [Etzold and Argos, 1993], emphasize
data retrieval rather than application integration. while
others, such as Kleisli [Buneman et al, 1995a], do not
provide any schema-level support for query-construction or
exploration of databases and applications. Another
category of systems deals with application integration at
the user interface level. The Wisconsin Package [GCG] is a
system that brings together several analytical tools that can
inter-operate in the very loose sense of the term, i.e.,
through files of a common format. Several public services
such as GSDB at NCGR [GSDB], provide web-based
interfaces that allow data to be passed to several
applications. These interfaces allow processing data one
object at a time, and are based on using pre-specified paths
and interfaces. TAMBIS [Baker et al, 1998] is a
noteworthy system that intends to provide transparent
access to biological databases and analysis tools. TAMBIS
adopts a mediator/wrapper architecture for data access and
application integration similar to that described in this
paper, but it relies on a knowledge-based interface that
hides the data sources.

A similar approach to ours for providing access to legacy
sources through database middleware is followed by the
Garlic project [Roth and Schwarz, 1997]. Ideas originating
in Object-Relational Database Management Systems
[Stonebraker 1995], best represented today by products
such as IBM’s DB2, Oracle 8 and Informix’s Universal

Server, have been catalytic for the research and
development of ASDTs in OPM. The key difference is that
ASDTs can be defined on top of non Object-Relational
DBMSs. This characteristic also differentiates ASDTs
from the Enhanced-ADTs in PREDATOR [Seshadri et al,
1997] and objects with methods in Object-Oriented
dababases.

Finally, a lot of optimism for integrated bioinformatics
systems has been generated by the OMG life science
committee (LSR), regarding how CORBA offers a
coherent framework in which independent data sources and
their service are easily accessible. Our work is an excellent
case study to show how CORBA can be useful. We
extensively used CORBA (a) for client-server
communication, (b) to wrap programs/servers implemented
using different technologies, and (c) to achieve a flexible,
scalable, and reconfigurable system architecture. However
we have not found CORBA/IDL to be suitable for
specifying the semantics of database interfaces or
biological applications. This is partly because IDL is
intended only to specify syntactic interfaces of
applications, the semantics of which are hidden in their
implementation, and partly because of limitations on the
data-types supported by IDL.

The contributions of this work include extensions to the
OPM data model and query language, to support methods
defined on ASDTs. In addition, ASDTs, as a mechanism to
integrate databases with applications, achieves similar
expressive power to that of Object Relational Data
Management Systems (ORDBMS) in legacy and relational
environments. Finally, we demonstrated novel ways for
“wrapping” biological applications of interest into
application servers that can be included in a multidatabase
query processing system.

References

Baker, P.; Brass, A.; Bechhofer, S.; Goble, C.; Paton, N.;
and Stevens, R. 1998. TAMBIS – Transparent Access to
Multiple Bioinformatics Information Sources. In
Proceedings of the 6th International Conference on
Intelligent Systems for Molecular Biology (ISMB'98).

Buneman, P.; Davinson, S.; Hart, K.; Overton, C.; and
Wong, L. 1995a. A Data Transformation System for
Biological Data Sources. In Proceedings of VLDB 1995.

Buneman, P.; Naqvi, S.; Tammen, V.; and Wong, L.
1995b. Principles of Programming with Complex Objects
and Collection Types. Theoretical Computer Science, 149,
pp. 3-48.

Chen, I.A., and Markowitz, V.M. 1995. An Overview of
the Object-Protocol Model and OPM Data Management
Tools. Information Systems Vol. 20, No. 5.

Chen, I.A.; Kosky, A.S.; Markowitz, V.M.; and Szeto, E.
1997. Constructing and Maintaining Scientific Database
Views. In Proceedings of the 9th International Conference
on Scientific and Statistical Database Management,
Hansen, D. and Ioannidis, Y. (Eds), pp. 237-248.

Chen, I.A.; Kosky, A.S.; Markowitz, V.M.; Szeto, E.; and
Topaloglou, T. 1998. Advanced Query Mechanisms for
Biological Databases. In Proceedings of the 6th

International Conference on Intelligent Systems for
Molecular Biology (ISMB’98).

Data Logic. 1998. Data Management and Integration Tools
for Bioinformatics. Technical White Paper,
http://www.genelogic.com/opm.htm

Etzold, T., and Argos, P. 1993. SRS, An Indexing and
Retrieval Tools for Flat File Data Libraries. Computer
Applications of Biosciences, 9, 1, pp. 49-57. See also
http://www.embl-heidelberg.de/srs/srsc.

The Wisconsin Package. Genetics Computer Group
(GCG), Madison, Wisconsin.

Genome Sequence DataBase (GSDB). The National Center
for Genome Resources. http://www.ncgr.org/gsdb

Object Management Group. Life Sciences Research.
http://www.omg.org/homepages/lsr

Kosky, A.S.; Chen, I.A., Markowitz, V.M.; and Szeto, E.
1998. Exploring Heterogeneous Biological Databases:
Tools and Applications. Proceedings of the 6th
International Conference on Extending Database
Technology (EDBT’98), Lecture Notes in Computer
Science Vol. 1377, Springer-Verlag, 1998, pp. 499-513.

Cattell, R. G. G. (ed) 1996. The Object Database Standard:
ODMG-2.0. Morgan Kaufmann.

Roth Tork, M., and Schwarz, P. 1997. “Don’t Scrap it,
Wrap it! A Wrapper Architecture for Legacy Data Sources.
In Proceedings of the 23rd VLDB Conference.

Seshadri, P.; Linvy, M.; and Ramakrishnan, R. 1997. The
Case for Enhanced Abstract Data Types. In Proceedings of
the 23rd VLDB Conference.

Stonebraker, M. 1995. Object-Relational DBMS: The Next
Wave. Morgan Kaufmann,.

