
TRANSFORMING DATABASES WITH RECURSIVE DATA
STRUCTURES

Anthony Kosky

A DISSERTATION
in

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy.

1996

Susan Davidson— Supervisor of Dissertation

Peter Buneman— Supervisor of Dissertation

Peter Buneman— Graduate Group Chairperson



c© Copyright 2003
by

Anthony Kosky



iii

To my parents.



iv



v

WARRANTY

Congratulations on your acquisition of this dissertation. In acquiring it you have shown yourself
to be a computer scientist of exceptionally good taste with a true appreciation for quality. Each
proof, algorithm or definition in this dissertation has been carefully checked by hand to ensure
correctness and reliability. Each word and formula has been meticulously crafted using only
the highest quality symbols and characters. The colours of inks and paper have been carefully
chosen and matched to maximize contrast and readability.

The author is confident that this dissertation will provide years of reliable and trouble free ser-
vice, and offers the following warranty for the lifetime of the original owner: If at any time a
proof or algorithm should be found to be defective or contain bugs, simply return your disser-
tation to the author and it will be repaired or replaced (at the author’s choice) free of charge.
Please note that this warranty does not cover damage done to the dissertation through normal
wear-and-tear, natural disasters or being chewed by family pets. This warranty is void if the
dissertation is altered or annotated in any way.

Concepts described in this dissertation may be new and complicated. The author accepts no
liability for any confusion or damage incurred during the reading and contemplation of the
dissertation. Children under the age of five should not attempt to read this dissertation without
proper adult supervision.

Comments, suggestions and personal abuse are all welcome and should be sent to the author
via electronic mail.



vi



vii

ACKNOWLEDGMENTS

This dissertation marks the end of six years which I spent engaged in studies and research
at the Department of Information and Computer Science of the University of Pennsylvania.
Though only a part of that time was spent directly on the work described in this dissertation,
it nevertheless reflects many influences, both from my time at Penn and from my studies prior
to that in England. There are many people to thank, both for their direct contributions to this
work, and also for their roles in developing my understanding and appreciation of theoretical
computer science, databases, programming languages, and many other subjects of relevance.

Firstly I would like to thank my advisors, Peter Buneman and Susan Davidson for their help, sug-
gestions, support, advice and encouragement, and for introducing me to the subject of databases.
Peter was also responsible for giving me the opportunity to enroll in a PhD program at Penn. I
would like to thank my committee members, Tim Griffin, Victor Markowitz, Carl Gunter, Val
Tannen and Chris Overton for their comments and advice. This work has also been influenced
greatly by the discussions of the “Tuesday afternoon group” including Leonid Libkin, Limsoon
Wong, Dan Suciu, Rona Machlin, Wenfei Fan and Kyle Hart. I would especially like to thank
Leonid for his many helpful comments and advice, and for his thorough reading of the proposal
for this dissertation. Barbara Eckman and Carmem Hara did much of the work on the trials
of the prototype transformation system described in part IV. Barbara also helped to explain
the Molecular Biology Databases and the database problems that inspired much of this work.
I am also grateful to Catriel Beeri, Jan Van den Bussche and Serge Abiteboul for their com-
ments on my other papers related to this work. Edward T. Bear gave consistent support and
encouragement, and helped with some of the more technically difficult proofs in this dissertation.

One of the most enjoyable aspects of my research at Penn was the collaboration with members
of the computational biology group, not only because it gave me an opportunity to look at some
practical applications for my work, but also because it gave me a chance to learn a little about
the fascinating subjects of molecular biology and genetics. I would like to thank Chris Overton
and David Searls for sharing there enthusiasm for these subjects, and for their many impromptu
biology lessons.

There are also many people who have contributed to my development first as a mathematician
and then as a computer scientist. I would like to thank the lecturers of the Department of
Mathematics at the University of Kent at Canterbury, in particular John Earl, who helped me
to develop an appreciation for the beauty of pure mathematics. My introduction to computer
science came when I did a Masters degree at the Department of Computing at Imperial College
of Science and Technology. In particular I was introduced to the subjects of formal methods
and functional programming by the lectures of Samson Abramsky, Mike Smyth, Steve Vickers,
Pete Harrison, Chris Hankin and others. Samson Abramsky also supervised my masters thesis
and recommended me as a possible PhD student at the University of Pennsylvania, for which
I am especially grateful. My knowledge and appreciation of theoretical computer science has
been extended further while at the Penn, through the lectures Val Tannen, Carl Gunter, Scott
Weinstein, Peter Freyd and others.



viii ACKNOWLEDGMENTS

Many of the staff at the University of Pennsylvania have helped me in dealing with bureaucracy
and various administrative details. I would particularly like to thank Mike Felker who’s help
allowed me to finish off and co-ordinate this PhD while working in California. I would also like
to thank Karen Carter, Nan Blitz, Susan Deysher, Elaine Benedetto and Jackie Caliman, and
members of the computing staff Mark Foster, Mark-Jason Dominus and Alex Garthwaite.

There are also many people who helped in making my time at Penn enjoyable, and helping me
to maintain a semblance of sanity. I would like to thank the Old Quaker Computer Scientists
for some very bizarre and amusing times, the Penn Magic play-testers, the Saturday-morning
Reading Terminal crowd, and all at Bicycle Therapy for keeping my bikes running nicely.

Finally, but most importantly of all, I would like to thank my parents and my family. Their love,
support and encouragement have been a constant comfort to me in spite of the long distances
between us, and I could not have achieved any of this without them.



ix

ABSTRACT

TRANSFORMING DATABASES WITH RECURSIVE DATA STRUCTURES

Anthony Kosky
Advisors: Susan Davidson and Peter Buneman.

This thesis examines the problems of performing structural transformations on databases in-
volving complex data-structures and object-identities, and proposes an approach to specifying
and implementing such transformations.

We start by looking at various applications of such database transformations, and at some of
the more significant work in these areas. In particular we will look at work on transformations
in the area of database integration, which has been one of the major motivating areas for this
work. We will also look at various notions of correctness that have been proposed for database
transformations, and show that the utility of such notions is limited by the dependence of
transformations on certain implicit database constraints. We draw attention to the limitations
of existing work on transformations, and argue that there is a need for a more general formalism
for reasoning about database transformations and constraints.

We will also argue that, in order to ensure that database transformations are well-defined and
meaningful, it is necessary to understand the information capacity of the data-models being
transformed. To this end we give a thorough analysis of the information capacity of data-models
supporting object identity, and will show that this is dependent on the operations supported by
a query language for comparing object identities.

We introduce a declarative language, WOL, based on Horn-clause logic, for specifying database
transformations and constraints. We also propose a method of implementing transformations
specified in this language, by manipulating their clauses into a normal form which can then be
translated into an underlying database programming language.

Finally we will present a number of optimizations and techniques necessary in order to build a
practical implementation based on these proposals, and will discuss the results of some of the
trials that were carried out using a prototype of such a system.



x ABSTRACT



xi

Contents

Acknowledgements vii

Abstract ix

Foreword 1

1.1 A Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Some Comments on the Mathematical Approach and Assumptions . . . . . . . . 3

I Database Transformations 5

2 Introduction 5

2.1 Methods of Implementing Database Transformation . . . . . . . . . . . . . . . . 6

3 Transformations in Database Integration 7

3.1 Database Integration: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Resolving Structural Conflicts in Database Integration . . . . . . . . . . . . . . . 10

3.3 Schema Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Merging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Data Models for Database Transformations 17

5 Information Dominance in Transformations 18

5.1 Hull’s Hierarchy of Information Dominance Measures . . . . . . . . . . . . . . . . 19

5.2 Information Capacity and Constraints . . . . . . . . . . . . . . . . . . . . . . . . 22



xii CONTENTS

II Observable Properties of Models for Recursive Data-Structures 25

6 Introduction 25

7 A Data-Model with Object Identities and Extents 27

7.1 Types and Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2 Database Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 A Query Language Based on Structural Recursion 31

8.1 Queries and the Language SRI(=) . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.2 Indistinguishable Instances in SRI(=) . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Bisimulation and Observational Equivalence without Equality 42

9.1 Bisimulation and Corespondence Relations . . . . . . . . . . . . . . . . . . . . . . 43

9.2 Distinguishing Instances without Equality on Identities . . . . . . . . . . . . . . . 46

10 Observable Properties of Object Identities with Keys 51

10.1 A Data-Model with Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.2 Computing Key Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.3 A Summary of Observational Equivalence Relations . . . . . . . . . . . . . . . . 57

11 A Data Model Based on Regular Trees 59

11.1 Regular Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.2 Trees of Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

11.3 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11.4 Mapping Between Regular Tree and Object-Identity Based Models . . . . . . . . 64

III The WOL Language for Database Transformations and Constraints 69

12 Introduction 69

12.1 Implementation of WOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12.2 A Roadmap to Part ?? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS xiii

13 The Syntax and Semantics of WOL 73

13.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

13.3 Semi-Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

14 Database Transformations 88

14.1 Partitioning Schemas and Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 88

14.2 Transformation Clauses and Programs . . . . . . . . . . . . . . . . . . . . . . . . 89

14.3 Transformations of Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

14.4 Normal Forms of Transformation Programs . . . . . . . . . . . . . . . . . . . . . 95

14.5 Simplifying Characterizing Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 104

14.6 Unifiers and Unfoldings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

14.7 Recursive Transformation Programs . . . . . . . . . . . . . . . . . . . . . . . . . 110

15 Transformations of Alternative Collection Types 122

15.1 An alternative representation for lists . . . . . . . . . . . . . . . . . . . . . . . . 123

15.2 Assigning precedence to list elements . . . . . . . . . . . . . . . . . . . . . . . . . 124

IV Implementation and Trials of the WOL Language 129

16 Introduction 129

16.1 A Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

17 Optimizing the Normalization Algorithm 132

18 Two Stage Transformations 143

18.1 Variants and Option Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

18.2 Variants in Source Types: an Example . . . . . . . . . . . . . . . . . . . . . . . . 144

18.3 Two-Stage Transformation Programs . . . . . . . . . . . . . . . . . . . . . . . . . 145

18.4 Generality of Two-Stage Decompositions of Transformation Programs . . . . . . 146

19 Trials 147

19.1 Transforming from ACe to Chr22DB . . . . . . . . . . . . . . . . . . . . . . . . . 147



xiv CONTENTS

Conclusions and Further Work 163

20.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

20.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography 167

Index 170



1

Foreword

The theme of this thesis is to study the problems associated with performing structural transfor-
mations on databases involving complex data-structures and object identity, and to propose an
approach to specifying and implementing such transformations based on a declarative language.
Such transformations arise from a number of areas including database integration, schema evo-
lution and implementing user views and data entry applications.

The language we propose, called WOL (Well-founded Object Language), is a declarative lan-
guage based on Horn-clause logic, which allows us to express database transformations and
constraints in a single framework, and thus allows us to reason about interactions between the
two. WOL differs from established Horn-clause based languages, such as Prolog or Datalog, in
that it is designed to deal with partial descriptions of database objects: a necessary facility
when dealing with very large and complex data-structures. We will propose a method of im-
plementing database transformations specified using WOL by first converting the clauses of a
transformation program to a normal form, and then translating the normal form clauses to an
underlying database programming language.

We will also look at a variety of related issues, including database constraints, and the infor-
mation capacity of data-models involving object identity. In the case of the first, we will argue
that there is an important interaction between database transformations and constraints, in
that constraints play a part in determining transformations, but also in that, in order for a
transformation program to be correct, various constraints may be implied on the source and
and target databases of the program.

We are concerned with transformations of databases involving complex, arbitrarily deeply nested
and possibly self-referential data-structures. In order to represent such data-structures we re-
quire a data-model equipped with a rich variety of type constructors, and also some sort of
reference mechanism such as pointers, object identities or variables defined via systems of equa-
tions. We will pursue a model similar to that of [2], based on the notion of object-identity and
incorporating set, variant and record type constructors. However our choice of using object-
identities is largely a stylistic one, and models based on any alternative reference mechanism
would yield similar results: indeed, in some sense, this point could be considered the theme
of part II of this thesis. In addition a central feature of our data-model is the notion of finite



2 FOREWORD

extents: that is that a database instance consists of a collection of known, finite extents, and
all values in the instance arise from those extents. This point, though it may seem trivial, is in
fact a major distinguishing factor between databases and other areas of computation, in that
allows us to compute a variety of functions on instances which would not be decidable in a more
general computational framework.

1.1 A Roadmap

This thesis covers a variety of aspects of database transformations, and related issues, from a
variety of perspectives. Since the interests of readers may vary, I will attempt to provide a
guide allowing the reader to concentrate on those parts of the thesis of interest to him or her,
while avoiding those parts which are not. The thesis is divided into four Parts, each of which
is equipped with its own introductory section, which will motivate the Part and also include a
more detailed roadmap. Here I will provide a brief overview of each Part, and also pointers to
sections that are of a particular importance to the remainder of the thesis.

Part I serves as a general introduction to the field of database transformations, and a survey of
some of the more significant work in this field. We start by describing the various different areas
in which database transformations arise, and the different possible approaches to implementing
them. In section 3 we look specificly at work done in the area of database integration. Database
integration is the area from which the most significant work on transformations has arisen,
and also the main motivating area for my work in this subject. In section 4 we discuss the
requirements on data-models for use in database transformations. In section 5 we examine
the various notions of correctness that have been proposed for database transformations. In
particular we describe various notions of information dominance, and show that in order to
ensure the correctness of a database transformation, it is necessary to consider constraints on
the source database which may not be explicit in the database schemas.

In Part II we will give a formal examination of the information capacity of data-models support-
ing object identity. It is essential to understand these issues in order to provide a formal treat-
ment of database transformations: transformations must respect the information represented by
instances, and should map equivalent instances to equivalent instances. We will argue that the
information represented by a database instance coincides precisely with its observable proper-
ties, and show that the observational equivalence of instances is determined by our assumptions
about what operations are available in a query language for comparing object identities.

In section 7 we will introduce our data-model, and in section 10 we will extend this model with
the notion of keys. It is recommended that a reader who is not concerned with the discussions
of Part II should nevertheless read section 7 and the first part of section 10, since these will be
necessary in order to understand the remaining parts of the thesis.

In Part III we will present an approach to specifying and implementing transformations based on
the WOL language. In section 13 we will introduce the WOL language, defining its syntax and
semantics, and giving examples to show how WOL can be used to express a variety of database



FOREWORD 3

constraints. In section 14 we will show how WOL can be used to express transformations, and
describe the idea of normal form transformation programs which may be implemented efficiently
using some underlying database programming language. In section 15 we will show how WOL
may be extended to deal with alternative collection types such as bags and lists.

In Part IV we will present information necessary in order to implement transformations using
WOL. We will present various optimizations necessary in order to make the algorithms con-
structed in Part III feasible, and will show how two-stage transformations can be used to avoid
potential exponential blowups in the size of transformations programs. We will also describe
our work on a prototype implementation of WOL and our experiences with trials using this
implementation.

1.2 Some Comments on the Mathematical Approach and Assumptions

Though the work described in this thesis was driven largely by pragmatic problems and by
intuitions about these problems, its foundations nevertheless lie in formal mathematics and
logic. As such, each result in the thesis requires a formal proof, and each concept a formal
definition, built on the proofs and definitions that have gone before. However many of the
required proofs are similar or almost identical, and some proofs are repetitive and involve many
similar cases. Writing out every detail of such proofs would be extremely time consuming, and
the resulting document would lack continuity and be very difficult to read. Consequently, in
the case of many similar proofs, I may choose to give the first proof in detail, and only outline
later proofs, or concentrate on the details particular to each later proof. In the case of proofs
involving large numbers of similar cases, I may only provide details of some representative cases,
and concentrate on any cases which require special treatment. In all cases I will provide sufficient
details for the reader to completely reconstruct a proof by comparison and adaption of other
proofs in the thesis.

I have tried to make this work as general as possible, and to avoid simplifying assumptions
and restrictions when ever it was feasible to do so. In some cases this generality may lead to
excessive complexity, and simpler but slightly more restrictive approaches may be suitable for
most pragmatic purposes. In such cases I have tried to first provide the most general versions of
the work, and then to describe the simplified versions and explain the restrictions they entail.

There are a number of pervasive assumptions about the underlying mathematical models that I
am dealing with. In particular I will assume a universe of sets which supports constructors for
finite products, power sets and finite power sets, and function spaces. I will make the slightly
non-standard assumption that function spaces and products are disjoint: if X and Y are sets, I
will assume that X → Y , the set of functions from X to Y , and X × Y , the set of pairs with
first element taken from X and second element from Y , are disjoint sets.

There are also a number of notational conventions and abbreviations which will occur sufficiently
often that they warrant mentioning. Finitely indexed families of sets or functions will occur
frequently. For example, C might be some finite set, and for each C ∈ C there might be a



4 FOREWORD

corresponding set σC . In such a case I will write σC for the family of sets σC for C ∈ C.

I will also frequently make use of ellipses, “. . .”, in order to represent sequences of similar terms
or expressions. For example I would write a1 : τ1, . . . , ak : τk to represent a series of k terms
separated by commas, where the ith term has the form ai : τi. Such notational conventions will
greatly simplify our presentation.



5

Part I

Database Transformations

2 Introduction

A database transformation is a mappings from the instances of one or more source database
schemas to the instances of some target schema. The terms “schema” and “instance” are used
here in a very general sense, to mean an abstract description of the structure of data in a
database, and the data stored in a database at a particular moment in time respectively. The
precise interpretation of these terms is dependent on the particular data-models being considered:
the schemas involved may be expressed in a variety of different data-models, and implemented
using different DBMSs.

The need to implement transformations between distinct, heterogeneous databases has become
a major factor in information management in recent years. Such transformations arise from a
number of different sources, including:

Database integration: where data from a number of distinct heterogeneous databases is
mapped into a local database, or made available through a federated database system,
to give the impression of a single unified database;

Schema evolution: where changes in the concepts being modeled and the tasks for which a
database is used result in changes in the database schema, and it is necessary to transform
existing data so that it conforms to a new, evolved schema; and

User views and data-entry applications: where the format in which data is entered into
a system or viewed are substantially different from the format in which data is actually
stored, and so it is necessary to transform data between these formats.

Incompatibilities between the sources and target exist at all levels – the choice of data-model,
the representation of data within a model, and the data within a particular instance – and
must be explicitly resolved within the transformations. The wide variety of data models in use,



6 PART I. DATABASE TRANSFORMATIONS

including those supporting complex data structures and object-identities, further complicate
these problems.

Much of the existing work on transformations concentrates on the restructuring of source
database schemas into a target schema, either by means of a series of simple manipulations
or by a description in some abstract language, and the mappings of the underlying instances are
determined by the restructurings of schemas. In some cases this emphasis is at the expense of
a formal treatment of the effect of transformations on instances, which is stated informally or
left to the intuition. However there are, in general, many possible interpretations of a particular
schema manipulation. For example, in a data model supporting classes of objects and optional
attributes of classes, suppose we changed an attribute of an existing class from being optional to
being required. There are a number of ways that such a schema manipulation can be reflected
on the underlying data: we could insert a default value for the attribute where ever it is omitted,
compute a new value based on the other attributes, or we could simply delete any objects from
the class for which the attribute is missing.

It is clear that there may be many transformations, with differing semantics, corresponding to
the same schema manipulation, and that it is necessary to be able to distinguish between them.
In contrast to existing work, our focus in this thesis is therefore on how transformations effect
the underlying data itself. We will use the term “database transformations”, as opposed to the
more common “schema transformations”, in order to emphasize this distinction.

In the remainder of this section we will describe the different methods used for implementating
database transformations. In section 3 we will examine database transformations as they arise
in the field of database integration. We will present an example and show how various existing
approaches might be used to address this example, and where the limitations of such existing
work lie. In section 4 we discuss the requirements on a data-model for database transformations,
and motivate our choice of an object-identity based model with set, variant and record type
constructors. In section 5 we will discuss the various notions of correctness that have been
proposed for database transformations. In particular we will describe Hull’s hierarchy of notions
of information dominance [23], and more recent work linking information dominance to database
constraints. We will argue that, in order to satisfy such correctness criteria, a transformation
may imply constraints on the databases involved which have been left implicit, or may not be
expressible in the datamodels used, and consequently the usefulness of such notions of correctness
is limited. We conclude that there is a need for general formalism for expresing database
transformations and constraints, and for reasoning about the interactions between the two.

2.1 Methods of Implementing Database Transformation

Implementations of database transformations fall into two camps: those in which the data is
actually transformed into a format compatible with the target schema and then stored in a
target database, and those in which the data remains stored in the source databases and queries
against the target schema are translated into queries against the source databases. The first
of these approaches can be thought of as performing a one-time bulk transformation, while the



3 TRANSFORMATIONS IN DATABASE INTEGRATION 7

second approach evaluates transformations in a call-by-need manner. Which of these methods
is most appropriate depends on the purpose of a particular transformation, and also the nature
of the underlying databases: their size and complexity, how rapidly they change, how difficult
it is to access them remotely, and so on.

For example, the most common approach adopted within federated database systems [22] is
call-by-need [32, 17, 29]. This approach has the advantage that the source databases retain
their autonomy, and updates to the various source databases are automatically reflected in the
target database. However, in cases where accessing the component databases is costly and the
databases are not frequently updated, actually merging the data into a local unified database
may be more efficient. Furthermore, maintaining integrity constraints over a federated database
system is a much more difficult task than checking data integrity for a single merged database
[38, 48]. As a result, the approach of performing a one-time bulk transformation is taken in [47].

Some work on schema evolution also advocates implementing transformations in a call-by-need
manner [7, 41, 44]. In this case multiple versions of a schema are maintained, and data is stored
using the version for which it was originally entered. The advantage of this approach is that ma-
jor database reorganizations can be avoided, and applications implemented for an earlier version
of a schema can still be used. However, for applications built on old versions of a schema to be
applied to new data, reverse transformations must also be implemented. Furthermore the cost of
maintaining multiple views and computing compounded transformations may be prohibitively
expensive. These problems are especially significant when schema evolutions are frequent, and
it is not possible a priori to tell when old views or data cease to be relevant. Consequently
some practical work on implementing schema evolutions has been based on performing bulk
transformations of data [35].

It is clear that the implementation method appropriate for a particular transformation will
depend on the application and on the databases involved. However, the semantics of a transfor-
mation, that is the effect of a transformation on the underlying data, should be independent of
the implementation method chosen as well as of the application area itself. Unfortunately, for
much of the work in the area of database transformations this is not the case, primarily due to the
fact that there is no independent model or characterization for the semantics of transformations.
One of the aims of this thesis is therefore to develop a semantics of database transformations,
and examine various metrics for the “goodness” or “correctness” of such transformations.

3 Transformations in Database Integration

In this section we will look at some examples of database transformations, particularly in the
context of database integration, and show how some parts of these examples are addressed
by existing work, while others require more general transformation techniques. The context
of database integration is particularly appropriate since much of the most significant work in
database transformations stems from this field. In contrast, transformations proposed in say
the area of schema evolution are comparatively simple [36, 44, 35, 7, 41], normally being based



8 PART I. DATABASE TRANSFORMATIONS

a single model and a small set of basic schema modifications (such as introducing specialization
and generalization classes, adding or removing attributes, and so on). It is not clear whether
the reason for this is historical, since database integration became a significant problem earlier
in terms of needing formal tools and techniques, or because the transformations involved in
database integration are inherently more difficult than those arising in other areas.

3.1 Database Integration: An Example

The objective of database integration is to make data distributed over a number of distinct,
heterogeneous databases accessible via a single database interface, either by constructing a
(virtual) view of the component databases to give them the appearance of a single database, or
by actually mapping data from the component databases into a single unified database. In either
case, the problem from the perspective of database transformations is how to transform data
from the various formats and structures in which it is represented in the component databases
into a form compatible with the integrated database schema.

Schema of European Cities and Countries

name

name

language

currency

Boolstr

str

str

str

is-capital

country

Schema of US Cities and States

State

name name

strstr

state

capital

City Country
E

City
A A

E

Figure 1: Schemas for US Cities and European Cities databases

Example 3.1: Figure 1 shows the schemas of two databases representing US Cities and States,
and European Cities and Countries respectively. The graphical notation used here is inspired by
[5]: the boxes represent classes which are finite sets of objects; the arrows represent attributes,
or functions on classes; and str and Bool represent sets of base values. An instance of such a
schema consists of an assignment of finite sets of objects to each class, and of functions on these
sets to each attribute. The details of this model will be made precise in section 7.



3 TRANSFORMATIONS IN DATABASE INTEGRATION 9

The first schema has two classes: City and State. The City class has two attributes: name,
representing the name of a city, and state, which points to the state to which a city belongs.
The State class also has two attributes, representing its name and its capital city.

The second schema also has two classes, this time City and Country. The City class has
attributes representing its name and its country, but in addition has a Boolean-valued attribute
capital which represents whether or not it is the capital city of a country. The Country class
has attributes representing its name, currency and the language spoken.

Suppose we wanted to combine these two databases into a single database containing information
about both US and European cities. A suitable schema is shown in figure 2, where the “plus”
node indicates a variant. Here the City classes from both the source databases are mapped to
a single class City in the target database. The state and country attributes of the City classes
are mapped to a single attribute place which take a value that is either a State or a Country,
depending on whether the City is a US or a European city. A more difficult mapping is between
the representations of capital cities of European countries. Instead of representing whether a
city is a capital or not by means of a Boolean attribute, the Country class in our target database
has an attribute capital which points to the capital city of a country. To resolve this difference
in representation a straightforward embedding of data will not be sufficient; we will need to
do some more sophisticated structural transformations on the data(see section 3.2). Further
constraints on the source database, ensuring that each Country has exactly one City for which
the is capital attribute is true, are necessary in order for the transformation to be well defined.
(The interaction between constraints and transformations will be explored in section 5.2).

City

State

Country

place

name

str capital

capital

euro-city

us-city
strname

strname

language

currency str

str
T

T

T

Figure 2: An integrated schema of European and US Cities

The problem of database integration is therefore to define an integrated schema, which represents
the relevant information in the component source databases, together with transformations from
the source databases to this integrated schema.

3.2 Resolving Structural Conflicts in Database Integration

In [9] Batini et al noted that schema integration techniques generally have two phases: conflict
resolution and merging or unioning of schemas. Although schema merging has received a



10 PART I. DATABASE TRANSFORMATIONS

great deal of attention, it is only a small (and usually the last) step in the process of database
integration. The more significant part of the process is manipulating the component databases so
that they represent data in a compatible way. In order to do this it is necessary to resolve naming
conflicts between the schemas (both homonyms and synonyms), and also to perform structural
manipulations on data to resolve conflicts in the way data are represented. An example of such a
structural manipulation was given by how the capital attribute was represented in the European
Cities schema.

The order in which the conflict resolution and schema merging phases are carried out varies
between different database integration methods. For example, in Motro[32] component schemas
are first unioned to form disjoint components of a “superview” schema, and the superview is
then manipulated in order to combine concepts and resolve conflicts between the component
schemas. In contrast, [33, 13, 40] assume that conflicts between schemas are resolved prior to
the schema merging process, and [8] interleaves the two parts of this process.

Schema of European Cities and Countries

City Country
language

str

str

str

strcountry

capitalname
currency

name

Figure 3: A modified schema for a European cities and countries database

Example 3.2: Returning to example 3.1, it is necessary to perform a structural modification on
the database of European Cities and Countries to replace the Boolean is capital attribute of
the City class with a capital attribute of class Country going to the class City. This yields an
intermediate database with the schema shown in figure 3. It is then necessary to associate the
classes and attributes of the two source databases, so that the City classes and name attributes,
and also the state and country attributes, are associated, and the remainder of the transformation
could be implemented by means of an automated schema-merging tool.

There are two basic approaches to systems for implementing transformations to resolve such
structural conflicts: using a small set of simple transformations or heuristics that can be applied
in series [32, 7, 31, 40], or using some high-level language to describe the transformation [1, 17].
Examples of these two approaches will be given in section 3.3 (examples 3.3 and 3.4).

The advantage of using a small set of pre-defined atomic transformations is that they are simple
to reason about and prove correctness for (notions of correctness for database transformations
is the subject of section 5). For instance, one could prove that each transformation was in-
formation preserving [37, 31], or if necessary associate constraints with each transformation in
order for it to be information capacity preserving, and deduce that a series of applications of



3 TRANSFORMATIONS IN DATABASE INTEGRATION 11

the transformations was information preserving. The disadvantage of this approach is that the
expressivity of such a family of transformations is inherently limited. For example the family
of transformations proposed in [32] are insufficient to describe the transformation between an
attribute of a class and a binary relation between classes: that is, one cannot transform from
a class Person with an attribute spouse of class Person to a binary relation Marriage on the
Person class. Although it might be easy to extend the family of atomic transformations to allow
this case, which is a common source of incompatibility between databases, there would still be
other important transformations that could not be expressed. The restructuring described in
example 3.2 can also not be expressed using any of the families of transformations mentioned
above.

A potentially much more flexible approach is to use some high-level language for expressing
structural transformations on data. However each transformation expressed in such a language
must be programmed and checked individually. Further, if it is necessary to ensure that a trans-
formation is information preserving then additional constraints may be needed on the source
databases, and in general these constraints will not be expressible in any standard constraint
language. This point will be taken up again in more detail in section 5. We therefore believe
that there is a need for a declarative language for expressing such transformations and con-
straints, which allows one to formally reason about the interaction between transformations and
constraints and which is sufficiently simple to allow transformations to be programmed easily.
Such a language will be presented in section 13.

3.3 Schema Integration Techniques

In [9] Batini et al. survey existing work on schema integration. They observe that schema
integration arises from two tasks: database integration, which we have already discussed, and
integration of user views, which occurs during the design phase of a database when constructing
a schema that satisfies the individual needs of each of a set of user groups. However they fail
to note that these two kinds of schema integration are fundamentally different. The reason for
this can be seen by considering the direction in which data is transformed in each case. For
database integration, instances of each of the source databases are transformed into instances
of the merged schema. On the other hand, when integrating multiple user views, instances of
the merged schema must be transformed back into instances of the user views (see figure 4).
The intuition is that when integrating user views all of the underlying information must be
represented; no objects or attributes can be missing since some user may want the information.
However, when integrating pre-existing databases the best that can be hoped for is that at-
tributes of objects that are present in every underlying database will definitely be present in the
integration; attributes that are present in some but not all of the underlying databases may be
absent in the integration. In [13] it was observed that integrating user views corresponds to the
“least upper bound” of the component schemas in some information ordering on schemas, while
in database integration what is required is the “greatest lower bound” of the component schemas
in some information ordering on schemas. A good schema-integration method should therefore
take account of its intended purpose and include a semantics for the underlying transformations



12 PART I. DATABASE TRANSFORMATIONS

of instances.

User
view n............

Data

Integration of user views Database integration

Unified DB
schema

Source DB............ schema n
view 1
User 

schema 1
Source DB

Implemented
DB schema

Transformations Data
Transformations

Figure 4: Data transformations in applications of schema integration

In this section we will concentrate on methodologies intended for database-integration, and look
at some representative examples of the various approaches to this problem.

Example 3.3: Continuing with our example of database integration, we can use the technique of
Motro[32] to integrate the Cities and States database of figure 1 with the restructured Cities and
Countries database of figure 3.1 The process is illustrated in figure 5. First, a disjoint union of
the two schemas is formed (a), and then a series of “macro” transformations are applied to form
the desired integrated schema.2 The transformations applied include introducing generalizations
(b), deriving new attributes as compositions or combinations of existing attributes (c), and
combining classes (d).

In this particular integration method, the semantics of the transformations are strongly linked
to the implementation method. The intention is that the integrated database be implemented
as a view of the component databases, and that queries against the integrated database be
executed by translating them into queries against the component databases and then combining
the results: the semantics of the individual transformations are given by their effects on queries.
However the lack of any independent characterization of their semantics makes it difficult to
reason about or prove properties of the transformations, or to use any alternative implementation
of the methodology.

1Recall that this methodology is not expressive enough to express the transformation from the Cities and
Countries database of figure 1 to that of figure 3.

2In the model of [32] generalizations are represented by classes with isa edges, though for consistency we
present this example using variants instead.



3 TRANSFORMATIONS IN DATABASE INTEGRATION 13

str

str

strcurrency

lang
name

State

name

str

capital

capital

place

str

name

name

state

name

State

name

name

str

name

State

name

str

str

place
capital

capital

str
str

str

country

capital

str

lang

currency

str

str

str

strcurrency

lang

name

name
capital

country

str

str

str

state

str

name

currency

name

State

str
capital

capital
str

name
lang

name

City

City

City Country

Country

(d)

City

City

Country

(a)

City Country

(b)

City

(c)

Figure 5: A schema integration using the methodology of Motro



14 PART I. DATABASE TRANSFORMATIONS

A more expressive and flexible way of specifying transformations is to use some sort of high-
level transformation language. An example of such an approach is the system of rewrite rules
for nested relational structures proposed by Abiteboul and Hull in [1].

Example 3.4: We will show how the rewrite rules of [1] can be used to represent the mapping
from the European Cities and Countries database of figure 1 to the integrated schema of figure 2.
The transformation is defined by a series of rewrite rules:

ρcapitals ≡ rew((name : X, is capital : True, country : Y ) → X)
ρcountry′ ≡ rew((name : N, language : L, currency : C)

→ (name : N, language : L, currency : C, capitals : ρcapitals(Z)))
ρcity ≡ rew((name : N, is capital : , country : Y )

→ (name : N, place : 〈|euro city : Y |〉))
ρ ≡ rew((City : Z, Country : W ) → (City : ρcity(Z), Country′ : ρcountry’(W )))

Each rule has the form “rew(pattern → expression)”. When a rewrite rule is applied to a set of
values of appropriate type it attempts to bind the pattern to each value in the set. The output of
the rule is the set of values of the expression corresponding to succesful bindings of the pattern.

For example the first rewrite rule

rew((name : X, is capital : True, country : Y ) → X)

can be applied to a set of records each of which has attributes name and country, and a Boolean
valued attribute is capital. The pattern matches those records for which the is capital attribute
is equal to True, and the rewrite rule returns the set of values of the name attribute X of those
records matched by the pattern.

The rewrite rule ρ takes records with set-valued attributes City and Country and applies the
rewrite rules ρcity and ρcountry′ to the values associated with these attributes. The rewrite rule
ρcountry′ takes a record with attributes name, language and currency, and forms a new record
with an additional attribute capitals which is formed by applying the rewrite rule ρcapitals to
the free variable X. This kind of nesting of rewrite rules is necessary in [1] to deal with nested
sets. In section 13 we will see that such nested rules can be avoided in the language WOL by
requiring some sort of identity on the elements of any set.

The model of [1] is purely value-based: there is no concept of object identity. Consequently it
is necessary to use some notion of keys in order to represent recursive structures such as those
of figure 1, and to reference values in one table or class from values in another (see section 10).
Here we are using the name attributes of Cities and States as keys.

Note that the structure formed here does not coincide precisely with that of figure 2 because the
class Country′ has a set valued attribute capitals rather than a single valued attribute capital.
To rectify this we would have to compose the transformation with a second transformation given



3 TRANSFORMATIONS IN DATABASE INTEGRATION 15

by the rewrite rule

ρ′ ≡ rew((name : N, language : L, currency : C, capitals : {X})
→ (name : N, language : L, currency : C, capital : X))

The pattern of this rewrite rule matches records for which the attribute capitals is singleton
valued, and maps them to similar records with a singleton attribute capital instead.

It is not possible to express this transformation using a single rewrite rule: in [1] rewrite rules
are not closed under composition. A subclass of simple rewrite rules are also defined, which
are closed under composition, but these are not sufficiently expressive to represent our example
transformation.

A number of other approaches to schema merging [33, 13, 40] take component schemas, such
as those of figures 1 and 3, together with constraints relating the elements of the schemas, for
example saying that the City classes of the two schemas and the state and country attributes
correspond, and apply an algorithm which returns a unified schema. In these approaches the
transformations are generally simple embeddings of data and type coercions.

For most schema integration methodologies the outcome is dependent on the order in which
schemas are integrated: that is, they are not associative. Intuitively this should not be the case,
since the integration of a set of schemas should depend only on the schemas and the relations
between them; the semantics of the integration should be independent of the algorithm used.
As a consequence of this non-associativity, a schema integration method will specify an ordering
in which schema integrations take place, such as a binary tree or ladder, or all at once, and
possibly a way of ordering the particular schemas. For example [8] states that schemas should
be ranked and then integrated in order of relevance, although no justification for this ordering
is given: why shouldn’t it be appropriate to integrate the most relevant schemas last, or in the
middle, rather than first? Further enforcing such an ordering is not acceptable in a system in
which new databases may be added at a later date: if a database is added to an established
federation the result should be the same as if the database had been present in the federation
at the outset.

In [13] it was shown that the non-associativity of schema integration methodologies is due to
new “implicit” nodes of classes that are introduced during the merging process. The variant of
the State and Country classes in example 3.1 is an example of such an implicit node. By taking
account of these implicit nodes and how they are introduced, an independent semantics can
be given to the merge of a set of schemas and the relations between them, and an associative
schema merging algorithm defined [13].

3.4 Merging Data

Once transformed into a suitable form, data from the component databases must be merged.
In a value based model without nested sets or additional constraints, this is simply a matter
of taking the union of the relevant data. However, when more complex data models are used,



16 PART I. DATABASE TRANSFORMATIONS

such as those supporting object identity or inter-database constraints, this task becomes more
difficult since it necessary to resolve conflicts and equate objects arising from different databases
[42, 26].

City Region

Country

str str

str

name

namecapital

place

name

regions

Figure 6: A schema for a international database of Cities and Countries

This problem is not apparent in our running example because the databases of Cities and States
and Cities and Countries represent disjoint sets of objects. However suppose we were also
interested in integrating a third database including international information about Cities and
Countries with the schema shown in figure 6. This schema has three classes: City, State and
Region. Each City is in a Region, and each Country has a set (indicated by a “star” node) of
Regions. The exact meaning of Region depends on the country to which it belongs. For example,
in the United States Regions would correspond to States (or Districts), while in Great Britain
Regions might be counties. This database might contain data which overlaps with the other
two databases. For example there might be objects representing the city Philadelphia in both
the International Cities and Countries database and in the Cities and States database, in which
case it would be necessary to map both objects to the same object in the integrated database.
Equally there might be objects representing the same City or Country in both the International
and the European Cities databases, which would need to be combined in the target database.

An important point to note here is that transformations from the various source databases to
an integrated database are not independent: it is not sufficient to merely write a transformation
from each individual database to the target database. Instead, we may have to write a transfor-
mation that takes a set of database instances, one for each source schema, and transforms them
into a target instance.

The problem of resolving object identity over multiple databases with constraints is examined in
[26, 19, 46]. In part II we will give an analysis of the more general problem of how to compare and
equate object identities, and conclude by recommending a system of external keys for identifying
object identities.



4 DATA MODELS FOR DATABASE TRANSFORMATIONS 17

4 Data Models for Database Transformations

Works on transformations between heterogeneous databases are usually based around some
sufficiently expressive data-model, or meta-data-model, which naturally subsumes the models
used for the component databases. Various data models have been used, ranging from relational
and extended entity-relationship models to semantic and object-oriented models. The main
requirements on such a meta-data-model are that the models of component databases being
considered should be embeddable in it in a natural way: that is, each constructor or data-
type of the component database models should have a natural analogue in the meta-data-
model. Further, such a model should be sufficiently simple and expressive as to allow data to
be represented in multiple ways so that conflicts between alternative representations of data
can be resolved. In [39] the requirements on a model for transforming heterogeneous databases
are examined, and the authors conclude that a model supporting complex data-structures (sets,
records and variants), object-identity and specialization and generalization relations between
object classes is desirable.

Person

name

str

Person
T

unit
none

some
father

mother

none
unit

some

Target schema

name sex

str

femalemale

unitunit

children

S

Source schema

Figure 7: A transformation between recursive data structures

Some notion of referencing, such as object-identities or keys is essential in order to represent
recursive data-structures such as those of figures 1 and 2. However, in order to transform
databases involving such recursive structures, it is also necessary to have a notion of extents or
classes in which all objects of a database must occur. To see this, let us look at another example,
namely the transformation between the two schemas shown in figure 7. Suppose we considered
the first schema merely to define a recursive type PersonS. A value of type PersonS would be a
record with attributes name, sex and children, such that the children attribute would be a set
of records of type PersonS. In order to transform a source database consisting of a set of values
of type PersonS, we would have to recursively apply a restructuring transformation to each set
of children of each person in the database. This recursion could be arbitrarily deeply nested,
and, in the case of cyclic data, non-terminating.

Fortunately the source schema of figure 7 conveys some important information in addition to
describing a recursive type: namely it tells us that our database consists of a finite extent or class
PersonS, and that all the people represented in the database are reachable as members of this



18 PART I. DATABASE TRANSFORMATIONS

extent. In particular it tells us that, if X is an object in the class PersonS and Y ∈ X.children
(Y is a child of X), then Y is also in the class PersonS. Consequently, when transforming the
database, we can iterate our transformation over the elements of the class PersonS, and not have
to worry about recursively applying the transformation to the children of a person.

Note that in performing a transformation, it may be necessary to create and reference an object-
identity before it has a value associated with it. In this example, if we perform the transformation
by iterating over the class PersonS, it may be necessary to create an object in the target class
PersonT, with father and mother attributes both set to some person, before the objects cor-
responding to the parents of the person being transformed have been encountered in the class
PersonS. In this case it is necessary to create and reference object identities for the two parents,
even though the corresponding values have not yet been formed. Keys provide a mechanism for
such early creation and referencing of object identities (see section 10.1).

The data-model we will use in this thesis supports object-identities, classes and complex data-
structures. Specialization and generalization relations will be viewed as particular examples of
constraints which can be expressed separately using a general constraint language. The model is
basically the same as that of [2] and is equivalent to the models implemented in various object-
oriented databases [6], except for the omission of direct support for inheritance. Formal details
of the model will be defered until sections 7 and 10.

5 Information Dominance in Transformations

One of the important questions of database systems is that of data-relativism, or when one
schema or data-structure can represent the same data as another. From the perspective of
database transformations this can be thought of as asking when there is a transformation from
instances of one schema to another such that all the information in the source database is pre-
served by the transformation. Such a transformation would be said to be information preserving.

There are a number of situations when dealing with database transformations where we might
want to ensure that a transformation is information preserving. For example when performing
a schema evolution, we might want to ensure that none of the information stored in the initial
database is lost in the new evolved database, or when integrating databases, we might wish
to ensure that all the information stored in one of the component databases is reflected in the
integrated database.

Example 5.1: For the schema integration described in example 3.1 the transformation from the
database of US Cities and States to the schema of figure 2 is information preserving, in that
all the information stored in an instance of the first schema will be reflected in the transformed
instance. Equally the transformation from the restructured European Cities and Countries
schema of figure 3 to the schema of figure 2 is information preserving.

However the transformation from the first European Cities and Countries schema in figure 1



5 INFORMATION DOMINANCE IN TRANSFORMATIONS 19

to the restructured schema of figure 3, and hence to the schema of figure 2, is not information
preserving. This is because the transformation to the restructured schema assumes that, for
each Country in the original schema, there is exactly one City of that Country with its is capital
attribute set to True. However the original schema allows a country to have multiple capitals:
there may be many Cities with their is capital attribute set to True. If we were able to associate
an additional constraint with European Cities and Countries schema of figure 1 stating that
each there can be at most one capital City in each Country, then the transformation would be
information preserving, and we could say that the schema of figure 2 dominates both of the
schemas of figure 1.

In section 5.1 we will look at the work of Hull in [23], which defines a series of progressively
more restrictive concepts of information dominance, and see how they can be related to trans-
formations using data models such as those described in section 4. In section 5.2 we consider the
recent work of Miller in [30, 31] which studies various applications of database transformations,
and the need for transformations to be information preserving in these situations.

5.1 Hull’s Hierarchy of Information Dominance Measures

In [23] Hull defined four progressively more restrictive notions of information dominance between
schemas, each determined by some reversible transformation between the schemas subject to
various restrictions. Although [23] dealt only with simply keyed flat-relational schemas, the
definitions and some of the results can be easily generalized to other data-models supporting
the concepts of schemas and instances of schemas.

If S is a schema in some data-model, we will write Inst(S) for the set of instances of S.

Given two schemas, S and T , a transformation from S to T is a partial map σ : Inst(S) →
Inst(T ). Intuitively the transformation is information preserving iff there is a second transfor-
mation from T back to S, say ρ : Inst(T ) → Inst(S) such that ρ recovers the instances of S.
That is, for any I ∈ Inst(S), the instances I and (ρ ◦ σ)(I) are equivalent3. In such a situation
we say that T dominates S via (σ, ρ).

We say that a schema T dominates S absolutely, S � T (abs), iff there exist transformations
σ and ρ such that T dominates S via (σ, ρ).

However a problem with this definition is that there may be many functions from Inst(S)
to Inst(T ) which do not correspond to any reasonable or definable transformations, so that,
although there may be an information preserving map from instances of S to those of T , there
is no way of realizing this map.

Suppose that B is the set of base types supported by a data-model (integers, strings, reals and
so on), and for each base type, b ∈ B, Db is the set of values of type b that may occur in an

3Note that, in order for this to make sense, we need a method of comparing the instances of a data-model,
and deciding when they are equivalent. The issues of equivalence of instances will be explored at some length in
part II. For now it will suffice to assume that any data-model has a decidable notion of equivalence associated
with it, such that equivalent instances are indistinguishable



20 PART I. DATABASE TRANSFORMATIONS

instance of the model.

For any instance I the support of I, Supp(I) is the set of values from
⋃
b∈B Db that occur in

I.

Suppose Z ⊆
⋃
b∈B Db is a finite set. A transformation σ from S to T is said to be Z-internal

iff, for every instance I ∈ Inst(S), Supp(σ(I)) ⊆ Supp(I) ∪ Z. Intuitively a transformation is
Z-internal if it doesn’t invent any new values, beyond some finite set of constants represented
by Z.

A schema T dominates a schema S internally, S � T (int) iff there is a finite set Z ⊆
⋃
b∈B Db

and Z-internal transformations σ and ρ such that T dominates S via (σ, ρ).

The next concept of dominance attempts to capture the idea that base values are “essentially
uninterpreted”. Suppose Z ⊆

⋃
b∈BD

b is a finite set. A Z-permutation gB is a family of
bijections gb : Db → Db such that gb restricted to Db ∩Z is the identity function for each b ∈ B.
Given a Z-permutation gB and an instance I, we can form the instance gB(I) by replacing every
base value v of type b occuring in I with gb(v).

A transformation σ from S to T is said to be Z-generic iff for any Z-permutation gB and any
instance I ∈ Inst(S), σ(gB(I)) ∼= gB(σ(I)). Intuitively a transformation is Z-generic if all base
values other than those in the finite set Z are “essentially uninterpreted values”. This fits with
the assumption common in database query and constraint languages that no computations are
performed on values themselves beyond simple comparisons.

The following lemma follows simply:

Lemma 5.1: If σ is a transformation from S to T and σ is Z-generic for some finite set Z, then
there is a finite set Z ′ such that Z ⊆ Z ′ and σ is Z ′-internal.

Proof: Suppose that S, T , Z and σ are such that σ is a Z-generic transformation from S to T ,
but there is no Z ′ as described in the lemma. Then there exists a base type b ∈ B and an instance
I of S such that the cardinality of Db is not finite and there exists a v ∈ Db such that v ∈
Supp(σ(I)) and v 6∈ Supp(I)∪Z, since otherwise we could take Z ′ = Z∪

⋃
{Db|Db finite, b ∈ B}.

Choose v′ ∈ Db \ (Z ∪ Supp(I)) such that v′ 6= v. Let gB be such that gb(v) = v′, gb(v′) = v, gb

is the identity elsewhere on Db, and gb
′
is the identity on Db′ for b′ ∈ B, b′ 6= b. Clearly gB is a

Z-permutation, and I = gB(I). But σ(I) 6= gB(σ(I)), contradicting our initial assumption.

The converse, however, does not hold. Suppose, for example, we had a schema with a class
Person which had an attribute age. Consider a transformation from the schema to itself which
is the identity transformation except that it replaces the age of each Person in an instance with
the minimum value of the age attribute occuring in the instance: if there was an object of class
Person with age 4 say, and no objects in Person with age less than 4, then every Person in the
transformed instance would have age 4. Such a transformation would be internal, since no new
values are introduced, but is not Z-generic for any Z.

A schema T dominates S generically, S � T (gen), iff there is a finite set Z and Z-generic
transformations σ and ρ such that T dominates S via (σ, ρ).



5 INFORMATION DOMINANCE IN TRANSFORMATIONS 21

The final concept of information dominance captures the idea of having transformations express-
ible in some implicit calculus. To formalize this definition and realize the following results it is
necessary to actually fix some underlying calculus for expressing transformations, and to show
that for any transformation expressed in the calculus there will be a finite set Z such that the
transformation is Z-generic. Later we will be using the language WOL, which does satisfy these
properties, for expression transformations. For the time being it will suffice to assume some
implicit calculus.

Suppose T and S are schemas. Then T dominates S calculously, S � T (calc), iff there are
calculus expressions representing transformations σ and ρ such that T dominates S via (σ, ρ).

It is clear that calculus dominance is more restrictive than the other three concepts of dominance.
However it has the disadvantage of depending on a particular calculus for its definition, while
the other definitions of dominance are more abstract.

The following proposition is due to Hull ([23]) and follows easily from the previous lemma:

Proposition 5.2:Hull ‘86. Let S and T be schemas. Then S � T (calc) implies S � T (gen),
S � T (gen) implies S � T (int) and S � T (int) implies S � T (abs).

A more significant result, also shown in [23] is the following:

Proposition 5.3:Hull ‘86 Let S and T be schemas. Then S � T (int) does not imply S � T (gen).

In particular, in [23], it was shown that there are flat relational schemas S and T for which
S � T (int) and S 6� T (gen). It follows that we cannot hope to construct a calculus which
is complete with respect to expressing internal dominance. The questions of whether absolute
dominance implies internal dominance, or generic dominance implies calculus dominance for
some calculus are left open however.

An important conclusion of [23] is that none of these criteria capture an adequate notion of
semantic dominance, that is, whether there is a semantically meaningful interpretation of in-
stances of one schema as instances of another. Consequently the various concepts of information
dominance can be used in order to test whether semantic dominance between schemas is plausi-
ble, or to verify that a proposed transformation is information preserving, but the task of finding
a semantically meaningful transformation still requires a knowledge and understanding of the
databases involved.

Another significant problem with this analysis is that it assumes that all possible instances
of a source schema should be reflected by distinct corresponding instances of a target schema.
However, in practice only a small number of instances of a source schema may actually correspond
to real world data sets. That is, there may be implicit constraints on the source database which
are not included in the source schema, either because they are not expressible in the data-model
being used or simply because they were forgotten or not anticipated at the time of initial schema
design. An alternative approach, pursued in [18], is to attempt to define information preserving



22 PART I. DATABASE TRANSFORMATIONS

transformations and valid schemas with respect to some underlying “universe of discourse”.
However such characterizations are impossible or impractical to represent and verify in practice.

5.2 Information Capacity and Constraints

In [30, 31] Miller et al. analyse the information requirements that need to be imposed on
transformations in various applications. The restrictions on transformations that they consider
are somewhat simpler than those of [23] in that they examine only whether transformations are
injective (one-to-one) or surjective (onto) mappings on the underlying sets of instances. For
example they claim that if a transformation is to be used to view and query an entire source
database then it must be a total injective function, while if a database is to be updated via
a view then the transformation to the view must also be surjective. Having derived necessary
conditions for various applications of transformations, they then go on to evaluate existing work
on database integration and translations in the light of these conditions.

An important observation in [30] is that database transformations can fail to be information
capacity preserving, not because there is anything wrong with the definition of the transfor-
mations themselves, but because certain constraints which hold on the source database are not
expressed in the source database schema. However the full significance of this observation is not
properly appreciated: in fact it is frequently the case that the constraints that must be taken
into account in order to validate a transformation have not merely been omited from the source
schema, but are not expressible in any standard constraint language.

unitunit

female

spouse

sex

str

Person

Pre-evolution Schema

male

name

Marriage

Male Female

name name

str str

husband wife

Evolved Schema

Figure 8: An example schema evolution

Example 5.2: Consider the schema evolution illustrated in figure 8. The first schema has only one
class, Person, with attributes representing a person’s name, sex (a variant of male and female)
and spouse. In our second (evolved) schema the Person class has been split into two distinct
classes, Male and Female, perhaps because we wished to start storing some different information
for men and women. Further the spouse attribute is replaced by a new class, Marriage, perhaps
because we wished to start recording additional information such as dates of marriages, or allow



5 INFORMATION DOMINANCE IN TRANSFORMATIONS 23

un-married people to be represented in the database.

It seems clear that there is a meaningful transformation from instances of the first database to
instances of the second. The transformation can be described by the following transformation
program, written in the language WOL:

X ∈ Male, X.name = N ⇐= Y ∈ Person, Y.name = N, Y.sex = insmale();
X ∈ Female, X.name = N ⇐= Y ∈ Person, Y.name = N, Y.sex = insfemale();
M ∈ Marriage, M.husband = X, M.wife = Y

⇐= X ∈ Male, Y ∈ Female, Z ∈ Person, W ∈ Person,
X.name = Z.name, Y.name = W.name, W = Z.spouse;

This program consists of three clauses which are logical statements describing the transforma-
tion. The first clause states that for each object Y in the source Person class, such that the
name attribute of Y is equal to the string N (“Y.name= N”), and the sex attribute of Y is the
male choice of the variant (“Y.sex = insmale()”), there is a corresponding object X in the target
Male class with nameattribute equal to N . Similarly the second clause states that for every Y
in the source class Person with name attribute N and sex attribute equal to the femalechoice
of the variant, there is a corresponding object X in the target Female class. The third clause
describes how a object M in the target Marriage class arises between to objects X and Y in the
target Male and Female classes. Details of the language WOL will be given in section 13.

Although this transformation intuitively appears to preserve the information of the first database,
in practice it is not information preserving. The reason is that there are instances of the spouse
attribute that are allowed by the first schema that will not be reflected by the second schema. In
particular the first schema does not require that the spouse attribute of a man goes to a woman,
or that for each spouse attribute in one direction there is a corresponding spouse attribute going
the other way. To assert these things we would need to augment the first schema with additional
constraints, such as:

X.sex = insmale() ⇐= Y ∈ Person, Y.sex = insfemale(), X = Y.spouse;
Y.sex = insfemale() ⇐= X ∈ Person, X.sex = insmale(), Y = X.spouse;
Y = X.spouse ⇐= Y ∈ Person, X = Y.spouse;

These are also clauses of the language WOL, but this time are interpreted as constraints on the
source database. The first clause states that for any Y in the class Person such that the sex
attribute of Y is the female choice of the variant, the spouse attribute of Y points to an object
for which the sex attribute is the male choice of the variant: that is, the spouse of a female
person is always a male person. Similarly the second clause states that the spouse of a male
is always a female. The third clause states that, for any object Y of class Person, if X is the
spouse of Y then Y is the spouse of X.

We can then show that the transformation is information preserving on those instances of the first
schema that satisfy these constraints. Notice however, that these constraints are very general,
and deal with values at the instance level of the database, rather than just being expressible at
the schema level. They could not be expressed with the standard constraint languages associated



24 PART I. DATABASE TRANSFORMATIONS

with most data-models (functional dependencies, inclusion dependencies, cardinality constraints
and so on).

This highlights one of the basic problems with information capacity analysis of transformations:
Such an analysis assumes that schemas give a complete description of the set of possible instances
of a database. In practice schemas are seldom complete, either because certain constraints were
forgotten or were not known at the time of schema design, or because the data-model being used
simply isn’t sufficiently expressive. When dealing with schema evolutions, where information
capacity preserving transformations are normally required, it is frequently the case that the
transformation implementing a schema evolution appears to discard information, while in fact
this is because the new schema is a better fit for the data, expressing and taking advantage of
various constraints that have become apparent since the initial schema design.

Further, when dealing with transformations involving multiple source databases, even if the
transformations from individual source databases to a target database are information preserv-
ing, it is unlikely that the transformations will be jointly information preserving. This is in
part due to the fact that the source databases may represent overlapping information, and
inter-database constraints are necessary to ensure that the individual databases do not contain
conflicting information. It may also be due to the fact that information describing the source of
a particular item of data may be lost.

An additional limitation of the information capacity analysis of transformations is that it is
very much an all-or-nothing property, and does not help us to establish other less restrictive
correctness criteria on transformations. When dealing with database integration, we might only
be interested in a small part of the information stored in one of the source databases, but wish to
ensure that the information in this subpart of the database is preserved by the transformation.
For example, we might be integrating our database of US Cities and States with a database of
European Cities or towns and Countries, and only be interested in those Cities or towns with
a population greater than a hundred thousand. However we would still like to ensure that our
transformation does not lose any information about European Cities and towns with population
greater than one hundred thousand.

It therefore seems that a more general and problem specific correctness criteria for transfor-
mations is needed, such as relative information capacity. In addition, a formalism in which
transformations and constraints can be jointly be expressed is needed in which to test these
more general correctness criteria. The language WOL provides a uniform framework for speci-
fying database transformations and constraints, and so provides a first step towards these goals.



25

Part II

Observable Properties of Models for
Recursive Data-Structures

6 Introduction

The purpose of a database transformation is to transform the information stored in one or
more source databases into an instance of a target database. In particular, the results of a
transformation should not be affected by implementation details such as the locations of source
databases or details of disk or memory allocation: if a transformation is well-defined then when
it is applied to two source instances representing the same information then the resulting target
instances should be the same, or at least should contain the same information. In order to ensure
that transformations are well-defined it is therefore necessary to have a precise understanding
of the information capacity of the data-models involved, and to be able to test whether two
instances represent the same information.

The information represented by a database instance is precisely that which can be observed
using the available query mechanisms: if some query distinguishes between two instances then
they represent different information, while if it is not possible to distinguish between them using
any queries then they represent the same information. Equally, two values or objects occuring
in a database represent the same data iff it is not possible to distinguish between them using
any available query mechanism. It follows that the semantics and expressive power of any data-
model is dependent on the assumptions about what operations are available for examining the
data.

Given two instances of a database schema, suppose we wished to determine whether or not the
instances were different. Using certain data-models and query languages this might be easy. For
example, in a relational database system, simply printing out the two instances and comparing
them would suffice. More succinctly, one could find a fixed set of queries, dependent only on the
schema, which would produce different results when applied to any two instances if the instances
were different. Even if the instances and interface involved more complex but fixed depth types,



26 PART II. OBSERVABLE PROPERTIES OF MODELS

such as in a nested relational model, as long as the query interface allowed you to “see” instances
completely you could distinguish any two distinct instances.

However, in a model allowing recursive or arbitrarily deeply nested data structures, such as a
semantic or object-oriented data model [6, 25], this technique will not work. In this case database
instances must use some kind of reference mechanism, such as object identities, pointers, logical
variables, or some other non-printable values, and so physically differing instances may give
identical results on all possible queries.

Suppose, for example, we are using a data-model which supports object identities and are
comparing the two instances shown bellow: object identities are represented by •, and each
identity has a value associated with it consisting of an integer and another object identity.

1 1

3

2 2

3

2

3

If our query language allowed us only to print out the values on paths of any fixed depth, then
we could not observe any differences between these two instances, they would both correspond
to an infinite sequence 1, 2, 3, 2, 3, 2, 3, . . ., lthough their representations are clearly different.

Though this example is simple, it represents a fundamental problem: in any query or database
programming language it is necessary to have some means of comparing data values in an
instance. Further, in order to reason about the expressive power of a data-model and query
language, it is necessary to be able to compare distinct database instances and to communicate
information between them. These issues are complicated by the presence of object identities
or some other kind of reference mechanism in a data model: there may be many different
ways of representing the same data using different choices, and possibly different structures
and interconnections of identities. Consequently we would like to regard object-identities as
not directly observable, and equate any values which are observationally indistinguishable. The
notion of observational distinguishability is intricately linked to the languages and operations
that are available for querying a database. An understanding of these issues is essential in the
design of languages for such data-models, as well as for reasoning about the well-definedness of
operations such as database transformations. Recent independent work by Abiteboul and Van
den Bussche[4] overlaps the results presented in this Part, albeit a with an emphasis on values
rather than entire instances.

In section 7 we will present the object-identity based model that we will use throughout the
remainder of this thesis. In section 8 we will present a variant of the query language SRI [10]
adapted for our data-model and equiped with an equality test on object identities. We will
show that, in this query language, instances are observationally indistinguishable iff they are



7 A DATA-MODEL WITH OBJECT IDENTITIES AND EXTENTS 27

isomorphic. In section 9 we will consider another variant of this query language, this time with
no means of comparing object identities, and show that in this case instances are indistinguish-
able iff they are bisimilar. In section 10 we will extend our model with systems of keys, and
will show that such systems of keys give rise to observational equivalence relations which lie
inbetween the two extremes of bisimulation and isomorphism of instances. In section 11 we will
present an alternative model based on regular trees, and show that instances of this model are
equivalent to bisimulation classes of instances in the regular tree model. Section 11 is, in a sense,
orthogonal to the other sections of this Part, and need not be included in a reading. However
it examines ideas that have been proposed in a variety of places, most notably in [2], but have
not been thoroughly examined elsewhere, and shows that, despite their intuitive nature, there
are considerable problems in providing a formal treatment of data-models based on un-ordered
regular trees.

7 A Data-Model with Object Identities and Extents

As has already been pointed out, in order to allow for the representation of recursive or arbitar-
ily deeply nested data-structures, a data-model must support support some kind of reference
mechanism. Various such mechanisms have been proposed, including the use of pointers, sur-
rogate keys or object identities ([27]). The choice between these different approaches is largely
a stylistic one. We will focus our attention on models based on object identities, since they
offer advantages of locational and data independence, and afford efficient implementation tech-
niques [27], and because the author finds the use of object identities to be the most intuitive of
these choices. However the results of these sections should apply equally well to other reference
mechanisms with minor adaptions.

An important distinction between databases and other fields of computation is that all the
values that may occur in a database are accessable through some top level finite extents. For
example, in a relational database all the data in an instance is contained in one of a fixed set
of relations, while in an object-oriented database every object belongs to some class [6]. In
section 4 it was observed that it is the presense of these finite extents that enables us to perform
transformations on recursive data-structures. In the following sections we will see that these
finite extents also allow us to compute comparisons on recursive data-structures that we would
not expect be decidable in a more general model of computation.

In this section we will describe a data-model supporting complex data-structures and object
identities, which we will use to investigate the problems of observational indistinguishability
raised in section 6. The same model will be used in part III as the basis of the transformation
and constraint language WOL. The model is basically equivalent to that of [2], and could also
be considered to be a simplification of the models of [5, 25].

The model starts with a type system which is similar to the types of the nested relational model [3]
with the addition of class types which are used to represent the finite extents of object identities
present in a database. In order to describe a particular database system, it it necessary to state



28 PART II. OBSERVABLE PROPERTIES OF MODELS

what classes are present and also the types of (the values associated with) the objects of each
class.

7.1 Types and Schemas

Definition 7.1: Assume a fixed countable set of attribute labels, A, ranged over by a, a′, . . ., and
a fixed finite set of base types, B, ranged over by b, . . ..

Let C be some finite set of classes, ranged over by C,C ′, . . .. Then the set TypesC of types over
C is then given by the following abstract syntax:

τ ::= {τ} — set type
| (a : τ, . . . , a : τ) — record type
| 〈|a : τ, . . . , a : τ |〉 — variant type
| b — base type
| C — class type

The notation (a1 : τ1, . . . , ak : τk) represents a record type with attributes a1, . . . , ak of types
τ1, . . . , τk respectively, and similarly 〈|a1, τ1, . . . , ak : τk|〉 represents a variant type with attributes
a1, . . . , ak.

A schema consists of a finite set of classes, C, and a mapping S : C → TypesC , such that

S : C 7→ τC

where τC is not a class type. (Since C can be determined from S we will also write S for the
schema).

Example 7.1: As an example let us consider the database of Cities and States shown in figure 1.
Our set of classes is

CA ≡ {CityA,StateA}
and the schema mapping, SA, is given by

SA(CityA) ≡ (name : str, state : StateA)
SA(StateA) ≡ (name : str, capital : CityA)

That is, a City is a pair consisting of a string (its name) and a State (its State), while a State
is a pair consisting of a string (its name) and a City (its capital).

For the combined schema of figure 2 the classes would be

CT ≡ {CityT ,StateT ,CountryT }

and the schema mapping ST would be

ST (CityT ) ≡ (name : str,place : 〈|us city : StateT , euro city : CountryT |〉)
ST (StateT ) ≡ (name : str, capital : CityT )

ST (CountryT ) ≡ (name : str, language : str, currency : str, capital : CityT )



7 A DATA-MODEL WITH OBJECT IDENTITIES AND EXTENTS 29

We can view schemas as directed graphs, with classes and other type constructors as their
nodes. Note that, if we take this view, any loops in the graph must go through a class node.
This means that any recursion in a schema must be via a class. Consequently, we will see in
section 7.2, any recursive data-structures in an instance must have a finite representation via
the object-identifiers of these classes.

7.2 Database Instances

The instances of our data-model will be based on object identities. This could be thought of as
providing an abstract model of the internal representation of a database instance, rather than
a representation of the observable properties of an instance.

For each base type b, assume a fixed domain Db associated with b.

The values that may occur in a particular database instance depend on the object identities
in that instance. Consequently we will first define the domain of database values and the
denotations of types for a particular choice of sets of object identities, and then define instances
using these constructs.

Suppose, for each class C ∈ C we have a disjoint finite set σC of object-identities of class C.4 We
define the domain of our model for the sets of object identities σC , D(σC), to be the smallest set
satisfying

D(σC) ≡
( ⋃
C∈C

σC
)
∪

 ⋃
b a base type

Db

 ∪

(A ∼→ D(σC)) ∪ (A×D(σC)) ∪ Pfin(D(σC))

where X ∼→ Y represents the set of partial functions from X to Y with finite domains.

Definition 7.2: For each type τ define [[τ ]]σC by

[[b]]σC ≡ Db

[[C]]σC ≡ σC

[[(a1 : τ1 . . . , ak : τk)]]σC ≡ {f ∈ A ∼→ D(σC) | dom(f) = {a1, . . . , ak}
and f(ai) ∈ [[τi]]σC , i = 1, . . . , k}

[[〈|a1 : τ1, . . . , ak : τk|〉]]σC ≡ ({a1} × [[τ1]]σC) ∪ . . . ∪ ({ak} × [[τk]]σC)
[[{τ}]]σC ≡ Pfin([[τ ]]σC)

4Alternatively oids of class C, or references, or pointers or place-holders or gumballs, or whatever else you like
best.



30 PART II. OBSERVABLE PROPERTIES OF MODELS

Definition 7.3: A database instance of schema S consists of a family of object sets, σC , and
for each C ∈ C a mapping

VC : σC → [[τC ]]σC

We write Inst(S) for the set of instances of a schema S.

Given an instance I of S (I = (σC ,VC)), we will also write [[τ ]]I for [[τ ]]σC .

Example 7.2: We will describe an instance of the schema introduced in example 7.1.

PA

NY

Phila

City

Albany

Pitts
Harris

NYC

State
state

state
state

capital
state

capital

state

Figure 9: A database instance

Our object identities are:

σCity ≡ {Phila,Pitts,Harris,NYC,Albany}
σState ≡ {PA,NY}

and the mappings are

VCity(Phila) ≡ (name 7→ “Philadelphia”, state 7→ PA)
VCity(Pitts) ≡ (name 7→ “Pittsburg”, state 7→ PA)
VCity(Harris) ≡ (name 7→ “Harrisburg”, state 7→ PA)
VCity(NYC) ≡ (name 7→ “New York City”, state 7→ NY)

VCity(Albany) ≡ (name 7→ “Albany”, state 7→ NY)

and

VState(PA) ≡ (name 7→ “Pennsylvania”, capital 7→ Harris)
VState(NY) ≡ (name 7→ “New York”, capital 7→ Albany)

This defines the instance illustrated in figure 9.

Homomorphisms and Isomorphisms of Instances

Two instances are said to be isomorphic if they differ only in their choice of object identities:
that is, one instance can be obtained by renaming the object identities of the other instance.



8 A QUERY LANGUAGE BASED ON STRUCTURAL RECURSION 31

Since object identities are considered to be an abstract notion, and not directly visible, it follows
that we would like to regard any two isomorphic instances as the same instance. In particular,
any query or transformation when applied to two isomorphic instances should return isomorphic
results. Isomorphism therefore provides the finest level of distinction that we might hope to be
able to observe.

In this section we will formalize this notion.

If I and I ′ are two instances of a schema S, and fC is a family of mappings, fC : σC → σ′C ,
C ∈ C, then we can extend fC to mappings f τ : [[τ ]]I → [[τ ]]I ′ as follows:

f bc ≡ c

f (a1:τ1,...,ak:τk)u ≡ (a1 7→ f τ1(u(a1)), . . . , ak 7→ f τk(u(ak)))
f 〈|a1:τ1,...,akτk|〉(ai, u) ≡ (ai, f τiu)

f{τ}{v1, . . . , vn} ≡ {f τv1, . . . , f τvn}

A homomorphism of two instances, I = (σC ,VC) and I ′ = (σ′C ,V ′C), of a schema S consists
of a family of mappings, fC , such that for each C ∈ C and each o ∈ σC

V ′C(fCo) = f τ
C
(VCo)

Definition 7.4: An isomorphism of two instances, I and I ′, consists of a homomorphism, fC

from I to I ′ and a homomorphism gC from I ′ to I, such that, for C ∈ C, gC ◦ fC is the identity
mapping on σC and fC ◦gC is the identity mapping on σ′C . I and I ′, are said to be isomorphic
iff there exists an isomorphism fC between I and I ′.

We write I ∼= I ′ to mean I is isomorphic to I ′.

In section 8 we will show that, given a query language equipped with an equality test on object
identities, isomorphism of instances coincides exactly with observational indistinguishability.

8 A Query Language Based on Structural Recursion

In this section we will present an adaption of the query language SRI ([10, 11]) to the model of
definition 7.3. The language is based on the mechanism of structural recursion over sets which
was described in [10] as a basis for a query language on the nested relational data-model. Our
choice of this mechanism is because it is semantically well understood and because it is known to
be more expressive than other formally developed query languages for nested relational model,
such as the algebra and calculus of [3]. Consequently most of the results on the expresivity
of various operators in this language paradigm will automatically carry over to other query
language paradigms.

In the following sections we will present two variants of the query language, SRI and SRI(=):the
= representing the inclusion of the equality predicate on object identities.



32 PART II. OBSERVABLE PROPERTIES OF MODELS

In section 8.1 we introduce the language SRI(=) and describe queries to be closed expressions of
ground type in this language. A denotational semantics for SRI(=) is given, and certain useful
shorthand notations or extensions are introduced. In section 8.2 we show that two instances are
indistinguishable in SRI(=) if and only if they are isomorphic, but that there is no generic test
for isomorphism of instances: that is, there is no SRI(=) query which, when evaluated for any
two instances, will return the same result if and only if the instances are isomorphic.

In section 9.2 we will present the language SRI with no comparison operator on object identities.
We will show that distinguishability of instances in this language coincides with the bisimulation
correspondence on instances defined in 9.2, and that it is possible to test values in an instance
for bisimilarity using only SRI. However we also show that testing for bisimilarity using SRI
requires the ability to recurse over the entire extents of a database instance, from which we
conclude that a more efficient means of comparing values is necessary.

In section 10 we will consider a third variant of the language SRI, this time taking account
of a key-specification on the schema. We show that distinguishability in such a language lies
between isomorphism and bisimulation of instances, and that such a language, together with an
acyclic key-specification, provides us with an efficient way of comparing databases and values in
a database.

8.1 Queries and the Language SRI(=)

The query language is described for a schema S, with classes C, such that S : C 7→ τC for each
C ∈ C. The schema will be considered to be implicit in the remainder of this section, and indeed
in most of this document.

We assume base types unit, Bool with associated domains Dunit ≡ {∅} and DBool ≡ {T,F},
in addition to a finite set of base types, B, ranged over by b, . . ., with associated domains Db.
(Bool is actually unnecessary since it is equivalent to a variant of units, but is included for
convenience). We expand our type system to include first-order function types (ranged over by
T, T ′, . . .), as well as object/data types (ranged over by τ, . . .):

Object types

τ ::= (a : τ, . . . , a : τ) | 〈|a : τ, . . . , a : τ |〉 | {τ} |
unit | Bool | b | C

General types

T ::= τ | τ → T

Definition 8.1: A ground type is an object type which contains no class types.

Ground types are significant in that values of ground type are considered to be directly observ-
able, while values of non-ground type will contain object identities, which do not have meaning



8 A QUERY LANGUAGE BASED ON STRUCTURAL RECURSION 33

outside of a particular instance. Further the set of values associated with a ground type will not
be dependent on a particular instance, so that expressions of ground type can be evaluated in
different instances, and their results can be compared.

For example the type (name : str, state name : str) is a ground type, while (name : str, state :
State) is not. When comparing two instances of the schema of example 7.1, it makes no sense
to compare values of the second type since they will contain object identities taken from two
distinct instances.

For each class C ∈ C we will assume there is a binary predicate =C in the language which tests
whether two terms evaluate to the same object identity. Also for each non-finite base type, b
we will assume a binary predicate =b. Consequently, we will see later this section that we can
define equality predicates =τ on each object type τ , and also set inclusion predicates, using the
language.

For each type τ we assume a countably infinite set of variables xτ , yτ , . . ., and for each base type
b ∈ B and base value c ∈ Db we assume a corresponding constant symbol c. The syntax and
typing rules are given in figure 10.

Products
` e : (a1 : τ1, . . . , ak : τk)

` πaie : τi
` e1 : τ1 . . . ` ek : τk

` (a1 = e1, . . . , ak = ek) : (a1 : τ1, . . . , ak : τk)

Variants
` e : τi

` ins
〈|a1:τ1,...,ak:τk|〉
ai e : 〈|a1 : τ1, . . . , ak : τk|〉

` e : 〈|a1 : τ1, . . . , ak : τk|〉 ` e1 : τ . . . ` ek : τ
` case e of a1(xτ11 ) ⇒ e1, . . . , ak(x

tk
k ) ⇒ ek : τ

Sets

` ∅τ : {τ}
` e1 : τ ` e2 : {τ}
` add(e1, e2) : {τ}

` e1 : τ1 → τ2 → τ2 ` e2 : τ2 ` e3 : {t1}
` sri(e1, e2, e3) : τ2

Functions
` e : T2

` λxτ1 · e : τ1 → T2

` e1 : τ1 → T2 ` e2 : τ1
` e1e2 : T2

Booleans

` tt : Bool ` ff : Bool

` e1 : Bool ` e2 : τ ` e3 : τ
` if(e1, e2, e3) : τ

Base values
c ∈ Db

` c : b
` e : b ` e′ : b
` e =b e′ : Bool

Others

` xτ : τ ` () : unit ` C : {C}
` e : C
`!e : τC

` e1 : C ` e2 : C
` e1 =C e2 : Bool

Figure 10: Typing rules for query language



34 PART II. OBSERVABLE PROPERTIES OF MODELS

The operator sri is the only part of this language to really require an explanation. sri takes
three arguments: a function, a starting value and a set. It then iterates the function over the set
starting with the starting value. So, for example, the expression sri(f, p, S) would be equivalent
to f(s1, f(s2, . . . , f(sk, p) . . .)), if S denoted the set {s1, . . . , sk} (allowing for rather a lot of
notational abuse).

Definition 8.2: An SRI(=) expression e is said to be closed iff there are no free variables occuring
in e. A query is a closed expression of ground type.

A query represents a question one can ask of a database: since they are closed expressions they
can be evaluated without recourse to any sort of an environment, and since they are of ground
type the results my be observed directly, and the results of evaluating the same query in different
database instances can be compared.

Example 8.1: For the schema of example 7.1, the following query will return the set of all names
of States in an instance:

sri(λx · λy · add(x.name, y), ∅,State)

where we use e.a as shorthand for πa(!e).

The following expression returns the set of all Cities in states named “Pennsylvania”:

sri(λx · λy · if(x.state.name = “Pennsylvania”, add(x, y), y), ∅,City)

However this expression does not count as a query, since its type is {City}. A query which
returns the names of all Cities that have a state named “Pennsylvania” would be

sri(λx · λy · if(x.state.name = “Pennsylvania”, add(x.name, y), y), ∅,City)

Semantics of SRI(=)

Let Var be the set of variables of SRI(=). An environment for instance I is a mapping ρ : Var
∼→

D(I) such that ρ(xτ ) ∈ [[τ ]]I for each variable xτ of type τ .

If ρ is an environment, xτ a variable and v ∈ [[τ ]]I a value then ρ[xτ 7→ v] denotes an environment
such that dom(ρ[xτ 7→ v]) = dom(ρ) ∪ {xτ} and

(ρ[xτ 7→ v])(y) ≡
{
v if y = xτ

ρ(y) if y ∈ dom(ρ) \ {xτ}

We define the semantic function V [[·]]I from expressions of SRI(=) and I-environments to D(I)



8 A QUERY LANGUAGE BASED ON STRUCTURAL RECURSION 35

by

V [[πae]]Iρ ≡ (V [[e]]Iρ)(a)
V [[(a1 = e1, . . . , ak = ek)]]Iρ ≡ (a1 7→ V [[e1]]Iρ, . . . , ak 7→ V [[ek]]Iρ)
V [[insae]]Iρ ≡ (a, V [[e]]Iρ)

V [[case e of a1(x1) ⇒ e1, . . . , ak(xk) ⇒ ek]]Iρ ≡


V [[e1]]I(ρ[x1 7→ u]) if V [[e]]Iρ = (a1, u)
...

...
V [[ek]]I(ρ[xk 7→ u]) if V [[e]]Iρ = (ak, u)

V [[∅]]Iρ ≡ {}
V [[add(e1, e2)]]Iρ ≡ {V [[e1]]Iρ} ∪ V [[e2]]Iρ
V [[sri(e1, e2, e3)]]Iρ ≡ f(u1, f(u2, . . . f(un, v) . . .)) where V [[e1]]Iρ = f

V [[e2]]Iρ = v
V [[e3]]Iρ = {u1, . . . , un}

V [[λx · e]]Iρ ≡ (u 7→ V [[e]]I(ρ[x 7→ u]))
V [[e1e2]]Iρ ≡ (V [[e1]]Iρ)(V [[e2]]Iρ)
V [[tt]]Iρ ≡ T
V [[ff]]Iρ ≡ F

V [[if(e1, e2, e3)]]Iρ ≡
{
V [[e2]]Iρ if V [[e1]]Iρ = T
V [[e3]]Iρ otherwise

V [[c]]Iρ ≡ c where c ∈ Db

V [[e1 =b e2]]Iρ ≡
{

T if V [[e1]]Iρ = V [[e2]]Iρ
F otherwise

V [[x]]Iρ ≡ ρ(x)
V [[()]]Iρ ≡ ∅
V [[C]]Iρ ≡ σC

V [[!e]]Iρ ≡ VC(V [[e]]Iρ) where V [[e]]Iρ ∈ σC

V [[e1 =C e2]]Iρ ≡


T if V [[e1]]Iρ, V [[e2]]Iρ ∈ σC

and V [[e1]]Iρ = V [[e2]]Iρ
F otherwise

Note that, for the semantics of an sri expression to be well defined, its function argument must
be idempotent and commutative in its first argument. In any of our uses of sri we will assume
that this is the case.

Note also that, if an expression e contains no free variables then its semantics does not depend
on the environment ρ. In this case we can write V [[e]]I for the semantics of e in instance I.

Example 8.2: For the instance described in example 7.2, and the first query of example 8.1,

V [[sri(λx · λy · add(x.name, y), ∅,State)]]I = {“Pennsylvania”, “New York”}

and for the second query

V [[sri(λx · λy · if(x.state.name = “Pennsylvania”, add(x.name, y), y), ∅,City)]]I
= {“Philadelphia”, “Pittsburgh”, “Harrisburg”}



36 PART II. OBSERVABLE PROPERTIES OF MODELS

Extending SRI(=)

In order to make the language SRI(=) more usable we will add some additional predicates and
logical operators. These do not actually add to the expressive power of the language, but may
be thought of as macros or short-hand notations for more complicated SRI expressions. The
typing rules for the extensions are shown in figure 11.

Logical Operators
` e1 : Bool ` e2 : Bool

` e1 ∧ e2 : Bool

` e1 : Bool ` e2 : Bool

` e1 ∨ e2 : Bool

` e : Bool

` ¬e : Bool

Predicates
` e : τ ` e′ : τ
` e =τ e′ : Bool

` e : τ ` e′ : {τ}
` e ∈τ e′ : Bool

Figure 11: Extensions to SRI(=)

The logical predicates can be defined in terms of the minimal SRI(=) as follows:

e ∧ e′ ≡ if(e, e′,ff)
e ∨ e′ ≡ if(e, tt, e′)
¬e ≡ if(e,ff, tt)

and the predicates =τ and ∈τ , for general object types τ , can be defined by the following
induction on types:

e =Bool e′ ≡ if(e, e′,¬e′)
e =unit e′ ≡ tt

e =(a1:τ1,...,ak:τk) e′ ≡ (πa1e =τ1 πa1e
′) ∧ . . . ∧ (πak

e =τk πak
e′)

e =〈|a1:τ1,...,ak:τk|〉 e′ ≡ case e of a1(x1) ⇒ (case e′ of a1(y1) ⇒ x1 =τ1 y1,

a2(y2) ⇒ ff, . . . , ak(yk) ⇒ ff),
. . . , ak(xk) ⇒ (case e′ of a1(y1) ⇒ ff, . . . , ak−1(yk−1) ⇒ ff,

ak(yk) ⇒ xk =τk yk)
e ∈τ e′ ≡ sri(λx · λu · (x =τ e) ∨ u,ff, e′)

e ={τ} e′ ≡ sri(λx · λu · (x ∈τ e′) ∧ u, tt, e) ∧
sri(λy · λu · (y ∈τ e) ∧ u, tt, e′)

In addition we use the shorthand notations

∃x ∈ e · e′ ≡ sri(λx · λu · e′ ∨ u,ff, e)



8 A QUERY LANGUAGE BASED ON STRUCTURAL RECURSION 37

and
∀x ∈ e · e′ ≡ sri(λx · λu · e′ ∧ u, tt, e)

where u does not occur in e, e′.

8.2 Indistinguishable Instances in SRI(=)

Two instances I and I ′ are said to be indistinguishable in SRI(=) iff, for every ground type
τ and closed expression e such that ` e : τ , V [[e]]I = V [[e]]I ′.

The following results tell us that isomorphism of instances exactly captures indistinguishability
in SRI(=), and is therefore an important result in establishing the expressive power of SRI(=).

The first lemma is expected, and tells us merely that the semantics of the SRI(=) query language
is not dependent the partcular choice of object identities in an instance. The substance of the
result is in the proof of theorem 8.2.

Lemma 8.1: If I and I ′ are two isomorphic instances of a schema S, say fC is an isomorphism
from I to I ′, then for any SRI(=) query e, V [[e]]I = V [[e]]I ′.

Proof: Recall that in section 7.2 we showed how to extend a family of fuctions on object identity
sets, fC , to functions for general object types f τ . We must also extend isomorphisms to cover
first rank function types of the form τ → T . Suppose fC is an isomorphism from I to I ′, and
gC is the family of inverse functions to the fC ’s, so gC is an isomorphism from I ′ to I. For type
T ≡ τ → T ′ and v ∈ [[T ]]I, define fT (v) ∈ [[T ]]I ′ by

(fT (v))(u) ≡ fT
′
(v(gτ (u)))

If ρ is an in I-environment then we define the I ′-environment, fC(ρ) to be such that dom(fC(ρ)) =
dom(ρ) and, for each xτ ∈ dom(ρ), fC(ρ)(xτ ) ≡ f τ (ρ(xτ )).

We can now show by induction on SRI(=) expressions that, for any expression e such that
` e : τ , and any suitable environment ρ,

f τ (V [[e]]Iρ) = V [[e]]I ′(fC(ρ))

We will provide some sample cases of the induction only:

1. If e is a constant symbol, say e ≡ c for some c ∈ Db, then

f b(V [[c]]Iρ) = f b(c)
= c

= V [[c]]I ′(fC(ρ))



38 PART II. OBSERVABLE PROPERTIES OF MODELS

2. If e ≡ xτ , a variable, then

f τ (V [[xτ ]]Iρ) = f τ (ρ(xτ ))
= (fC(ρ))(xτ )
= V [[xτ ]]I ′(fC(ρ))

3. If e ≡ C, for some class C ∈ C, then

f{C}(V [[C]]Iρ) = f{C}(σC)
= {fC(o)|o ∈ σC}
= σ′C

= V [[C]]I ′(fC(ρ))

4. If e ≡ πaie
′, where ` e′ : (a1 : τ1, . . . , ak : τk), then

f τi(V [[πaie
′]]Iρ) = f τi((V [[e′]]Iρ)(ai))

= (f (a1:τ1,...,ak:τk)(V [[e′]]Iρ))(ai)
= (V [[e′]]I ′(fC(ρ)))(ai)
= V [[πaie

′]]I ′(fC(ρ))

5. If e ≡ λxt · e′, then for any u ∈ [[τ ]]I ′

(f τ→T (V [[λxt · e′]]Iρ))(u) = fT ((V [[λxt · e′]]Iρ)(gτ (u)))
= fT (V [[e′]]I(ρ[xτ 7→ gτ (u)]))
= V [[e′]]I ′(fC(ρ[xτ 7→ gτ (u)])
= V [[e′]]I ′((fC(ρ))[xτ 7→ f τ (gτ (u))])
= V [[e′]]I ′((fC(ρ))[xτ 7→ u])
= (V [[λxτ · e′]]I ′(fC(ρ)))(u)

where gC is the inverse of fC . Hence f τ→T (V [[λxt · e′]]Iρ = V [[λxτ · e′]]I ′(fC(ρ)).

6. Suppose e ≡ sri(e1, e2, e3), and V [[e1]]Iρ = h, V [[e2]]Iρ = u, V [[e3]]Iρ = {v1, . . . , νn}.
By induction hypothesis V [[e3]]I ′(fC(ρ)) = f{τ1}({v1, . . . , vn}) = {f τ1(v1), . . . , f τ1(vn)},
V [[e2]]I ′(fC(ρ)) = f τ2(u) and for any v′ ∈ [[τ1]]I ′ and u′ ∈ [[τ2]]I ′, V [[e1]]I ′(fC(ρ))(v′)(u′) =
f τ2(h(gτ1(v′))(gτ2(u′))) where gC is the inverse of fC .

We prove result by induction on n, the size of V [[e3]]Iρ. If n = 0, then

f τ2(V [[sri(e1, e2, e3)]]Iρ) = f τ2(u)

If n ≥ 1 then

f τ2(V [[sri(e1, e2, e3)]]Iρ)



8 A QUERY LANGUAGE BASED ON STRUCTURAL RECURSION 39

= f τ2(h(v1, h(v2, . . . h(vn, u) . . .)) . . .)
= f τ2(h(gτ1(f τ1(v1), gt2(f τ2(h(v2, . . . h(vn, u)) . . .))
= f τ1→τ2→τ2(h)(f τ1(v1), f τ2(h(v2, . . . , h(vn, u) . . .)))
= f τ1→τ2→τ2(h)(f τ1(v1), . . . f τ1→τ2→τ2(h)(f τ1(vn), f τ2(u)) . . .)

Hence f τ2(V [[sri(e1, e2, e3)]]Iρ) = V [[sri(e1, e2, e3)]]I ′(fC(ρ)).

The other cases follow in a similar manner.

Consequently, since for any ground type τ , [[τ ]]I = [[τ ]]I ′ and f τ is the identity on [[τ ]]I, we have

V [[e]]I = V [[e]]I ′

for any query e.

Theorem 8.2: Two instances, I and I ′, are indistinguishable in SRI(=) if and only if they are
isomorphic.

Proof: The if part follows from lemma 8.1.

For the only-if part, it suffices to show that, for any instance I, we can construct an expression
eI such that ` eI : Bool and V [[eI ]]I ′ is true iff I ′ ∼= I.

To simplify things we will assume that our schema, S, involves only a single class C. The
construction of the distinguishing expression works just as well for the case where S has multiple
classes, though the nested subscripts and superscripts become rather unmanageable.

Suppose I = (σC ,VC) is an instance of schema S, such that

σC = {o1, . . . , ok}

and
VC(oi) = pi

where pi ∈ [[τC ]]I.

We also assume an implicit ordering on the object identities o1, . . . , ok, and fix a sequence of
variables, xC1 , . . . , x

C
k .

For any value p ∈ [[τ ]]I we inductively define SRI(=) expressions p̃ with free variables xC1 , . . . , x
C
k ,

as follows:

1. If p ∈ [[unit]]I then p̃ ≡ ()

2. If p ∈ [[Bool]]I then if p = T then p̃ ≡ tt otherwise p̃ ≡ ff

3. If p ∈ [[b]]I, so p ∈ Db, then p̃ ≡ p

4. If p ∈ [[C]]I, say p = oi ∈ σC , then p̃ ≡ xCi



40 PART II. OBSERVABLE PROPERTIES OF MODELS

5. If p ∈ [[{τ}]]I, say p = {q1, . . . , qn}, then p̃ ≡ add(q̃1, . . . add(q̃n, ∅) . . .)

6. If p ∈ [[(a1 : τ1, . . . , an : τn)]]I then p̃ ≡ (a1 = ˜p(a1), . . . , an = ˜p(an))
7. If p ∈ [[〈|a1 : τ1, . . . , an : τn|〉]]I, say p = (ai, q), then p̃ ≡ insai q̃.

Then for any type τ and any p ∈ [[τ ]]I, we have ` p̃ : τ and

V [[p̃]]I(x1 7→ o1, . . . , xk 7→ ok) = p

We will use the shorthand expression Dist(e1, . . . , en) defined by

Dist(e1, . . . , en) ≡ e1 6= e2 ∧ . . . ∧ e1 6= en ∧ e2 6= e3 ∧ . . . ∧ e2 6= en ∧ . . . ∧ en−1 6= en

So V [[Dist(e1, . . . , en)]]Iρ = T iff the values V [[e1]]Iρ,. . . , V [[en]]Iρ are distinct.

Now we can define eI as follows:

eI ≡ ∃x1 ∈ C · . . .∃xk ∈ C ·
Dist(x1, . . . , xk) ∧
(∀y ∈ C · (y = x1 ∨ y = x2 ∨ . . . ∨ y = xk)) ∧
(!x1 = p̃1) ∧ . . . ∧ (!xk = p̃k)

So eI states first that there are n distinct elements of class C, which are bound to the variables
x1, . . . , xn, next that every object identity of class C is one of these n identities, and finally that
the values associated with each of x1, . . . , xn correspond to the values associated with the object
identities in the instance.

For any instance I ′ we now have V [[eI ]]I ′ = T iff I ′ ∼= I.

Example 8.3: Returning to the instance I described in example 7.2, we construct eI as

eI ≡ ∃x1 ∈ City · ∃x2 ∈ City · ∃x3 ∈ City · ∃x4 ∈ City · ∃x5 ∈ City ·
∃y1 ∈ State · ∃y2 ∈ State ·
(Dist(x1, x2, x3, x4, x5) ∧Dist(y1, y2) ∧
(∀z ∈ City · (z = x1 ∨ z = x2 ∨ z = x3 ∨ z = x4 ∨ z = x5)) ∧
(∀w ∈ State · (w = y1 ∨ w = y2)) ∧
x1 = (name = “Philadelphia”, state = y1) ∧
x2 = (name = “Pittsburgh”, state = y1) ∧
x3 = (name = “Harrisburg”, state = y1) ∧
x4 = (name = “New York City”, state = y2) ∧
x5 = (name = “Albany”, state = y2) ∧
y1 = (name = “Pennsylvania”, capital = x3) ∧
y2 = (name = “New York”, capital = x5))



8 A QUERY LANGUAGE BASED ON STRUCTURAL RECURSION 41

Then V [[eI ]]I = T, and for any other instance I ′, V [[eI ]]I ′ = T iff I ′ ∼= I.

Claim: For any reasonable query language L, such that L supports an equality predicate on
object identities, any two instances are indistinguishable in L if and only if they are isomorphic.

Justification: To see that this is true we need to demonstrate that, in any natural query language
we can think of, with extensions for handling object identity dereferencing and classes, it is
possible to construct an expression eI equivalent to the one from theorem 8.2. For example
the constructors used in the proof of theorem 8.2 do not go beyond those found in the nested
relational algebra of [12] or the calculus of [3] without the powerset operator.

The next result tells us that, though any two non-isomorphic instances are distinguishable, it
is not possible to find a single query or set of queries which are independent of the database
instances, but which will distinguish between non-isomorphic instances. This means that, given
two instances and a query interface or language such as SRI(=) for examining them, we can
not in general decide whether or not the two instances are isomorphic, or find a query which
distinguishes between them.

First we must recall our definition of Z-internal transformations from section 5.1 and provide a
similar definition for general functions on instances.

Definition 8.3: Suppose that σ is a function from instances of a schema S to some set D,
σ : Inst(S) → D, and Z is a finite set of base values, Z ⊆

⋃
b∈B Db. For each v ∈ D write

Supp(v) for the set of values from
⋃
b∈B Db occuring in v. σ is said to be Z-internal iff for any

instance I, Supp(σ(I)) ⊆ Supp(I)∪Z. That is σ does not introduce any new base values, other
than those in Z.

Lemma 8.3: For any closed SRI(=) expression, e, there exists a finite set Z such that the
mapping V [[e]] is Z-internal.

Proof: Let Const(e) denote the set of constants occuring in an expression e. We can show that
V [[e]] is Z-internal where Z = {c|c ∈ Const(e)} ∪ {T,F}. It is sufficient to argue that there
are no operators in the language introduce new base values, other than predicates which may
introduce the values T or F. More formally the result may be proved using induction on SRI(=)
expressions.

Proposition 8.4: For any non-trivial schema (i.e. a schema containing at least one class and
admitting a non-trivial instance), it is not possible to build a generic expression in SRI(=)
which tests whether tests whether two instances are isomorphic. In other words, given a schema
S, it is not possible to construct a query eS , depending only on S, such that for any two instances
I and I ′, V [[eS ]]I = V [[eS ]]I ′ iff I and I ′ are isomorphic.

Proof: Suppose there is such a query e, and ` e : τ . Then there is a finite Z such that V [[e]]
is Z-internal. For any instances I and I ′, [[τ ]]I = [[τ ]]I ′ = T , where T is a possibly infinite set
of values. However we can choose a finite set of base values, say W ⊆

⋃
b∈B Db such that there

exist instances I with Supp(I) ⊆ W . So, for any instance I with Supp(I) ⊆ W , V [[e]]I ∈ T



42 PART II. OBSERVABLE PROPERTIES OF MODELS

and Supp(V [[e]]I) ⊆ W ∪ Z. The set {v ∈ T | Supp(v) ⊆ W ∪ Z} is finite. However there are
infinitely many non-isomorphic instances, I, with Supp(I) ⊆ W : given one such instance we
can produce infinitely many of them by introducing duplicates of object identities. It follows by
a simple cardinality argument that e can not distinguish between these instances.

Claim: For any non-trivial schema S, it is not possible to build a generic expression eS in any
pure query language, L, such that eS distinguishes between all non-isomorphic instances of S.

Justification: By saying that a language L is a “pure” query language we mean that it can
express operations which extract, manipulate and compare data from an instance, but cannot
perform general computations, such as arithmetic. In particular any query expressible in such a
language should not create any new base values, other possible than those belonging to a finite
set of constants that occur in the query. Consequently any query expressible in a pure query
language should be Z-internal for some finite set Z, and so the proof of proposition 8.4 can be
applied.

9 Bisimulation and Observational Equivalence without Equality

It seems clear that the object-identity based model of definition 7.3 captures our intuition about
how databases with recursive values and extents are represented. However, since object identities
are not normally considered to be directly observable, or to have meaning outside the internal
representation of a database, it follows that there can be many indistinguishable instances in this
model. Any particular query system or set of assumptions about what queries may be asked of
an instance will lead to an observational equivalence relation on instances: two instances being
equivalent when they are indistinguishable under that query system.

In section 7.2 we introduced the concept of isomorphism of instances to represent when two
instances differed only their choice of object identities, and commented that, intuitively, any
two isomorphic instances should not be distinguishable by any query mechanism. As such,
isomorphism should be at least as fine as any possible observational equivalence relation. In
section 8 we showed that, given a reasonably expressive query language with an equality test
on object-identities, observational equivalence coincides precisely with isomorphism. However it
is questionable whether including a direct equality test on object identities in a query language
is reasonable: there may be situations where multiple objects represent the same data, and we
do not wish to distinguish between distinct object identities if they have the same observable
values associated with them. This is particularly true, for example, when dealing with federated
database systems where data may be replicated over several distinct instances. We would there-
fore like a notion of equivalence of schemas which captures the idea that two instances have the
same printable data, though the number and interconnections of the object-identities used to
represent that data may differ.

In section 9.1 we will define bisimulation equivalence on instances and values, and argue that
intuitively bisimulation is at least as coarse as any observable equivalence relation on instances
for any reasonable query system. In section 9.2 we will show that bisimulation actually coincides



9 BISIMULATION AND OBSERVATIONAL EQUIVALENCE WITHOUT EQUALITY 43

with observational equivalence for a query language with no means of derectly comparing object-
identities.

9.1 Bisimulation and Corespondence Relations

The definition of bisimulation relations will proceed in stages: we start by defining correspon-
dence relations between the object-identities of two instances, and then define bisimulation in
terms correspondence relations.

Definition 9.1: A correspondence between two families of object identifiers σC and σ′C is a
family of binary relations ∼C⊆ σC × σ′C , C ∈ C.

For each type τ , we can extend ∼C to a binary relation ∼τ⊆ [[τ ]]σC× [[τ ]]σ′C . ∼τ are the smallest
relations such that:

1. c ∼b c for cb ∈ Db,

2. x ∼(a1:τ1,...,ak:τk) y if x(ai) ∼τi y(ai) for i = 1, . . . , k,

3. (ai, x) ∼〈|a1:τ1,...,ak:τk|〉 (aj , y) if ai = aj and x ∼τi y, and

4. X ∼{τ} Y if for every x ∈ X there is a y ∈ Y such that x ∼τ y and for every y ∈ Y there
is an x ∈ X such that x ∼τ y.

A correspondence ∼C is said to be consistent with instances I = (σC ,VC) and I ′ = (σ′C ,V ′C)
if for each C ∈ C and all o ∈ σC , o′ ∈ σ′C , if o ∼C o′ then VC(o) ∼τC V ′C(o′).

Intuitively a correspondence relation is some possible correspondence between the object iden-
tities of two instances. A correspondence relation is consistent iff it is not at odds with the
printable values associated with the objects of that instance.

Lemma 9.1: Given any set of consistent correspondences between the instances I and I ′ the
correspondence formed by taking the union of the relations for each class C ∈ C from each of
the set of correspondences is also consistent for I and I ′.

Proof: Suppose we have a family of correspondence relations, {∼C
a |a ∈ A} between object-

identities σC and σ′C . Consider the correspondence relation ∼C defined by (∼C) ≡
⋃
a∈A(∼Ca )

for each C ∈ C. Now ∼C can be extended to binary relations on general types ∼τ , and for any
type τ and any a ∈ A, (∼τa) ⊆ (∼τ ).

Suppose instances I = (σC ,VC) and I ′ = (σ′C ,V ′C) are such that, for each a ∈ A, ∼C
a is consistent

with I and I ′. Suppose that C ∈ C, o ∈ σC , o′ ∈ σ′C are such that o ∼C o′. Then there is an
a ∈ A such that o ∼Ca o′. Hence VC(o) ∼τC

a V ′C(o′), and so VC(o) ∼τC V ′C(o′). Hence ∼C is
also consistent with I and I ′.



44 PART II. OBSERVABLE PROPERTIES OF MODELS

Definition 9.2: Let I, I ′ be instances of a schema S. Then we define the bisimulation corre-
spondence, I≈C

I′ , between I and I ′ to be the largest consistent correspondence between I and
I ′ (the existence of which follows from the previous lemma). Since the subscripts are rather
cumbersome here, and are usually clear from context, we will frequently omit them.

Given any two instances I and I ′, we say I and I ′ are bisimilar and write I ≈ I ′ if and only
if, for each C ∈ C,

1. for each o ∈ σC there is an o′ ∈ σ′C such that o I≈I′ o′,

2. for each o′ ∈ σ′C there is an o ∈ σC such that o I≈I′ o′,

The bisimulation correspondence between two instances therefore links any two object-identities
that can be linked by some consistent correspondence between the two instances, and therefore
cannot be distinguished by the non-object-identity (printable) part of the values associated with
the objects. Two instances are bisimilar iff for each object-identity occuring in one instance
there is a corresponding object-identity in the other instance such that the two objects can not
be distinguished by looking at the associated values.

Proposition 9.2: The relation ≈ is an equivalence on the set Inst(S) of instances of a schema S.

Proof: It is clear that ≈ is a reflexsive and symmetric relation on instances. We shall prove
that it is transitive.

Suppose I, I ′, I ′′ ∈ Inst(S) are such that I ≈ I ′ and I ′ ≈ I ′′, where I = (σC ,VC), I ′ = (σ′C ,V ′C)
and I ′′ = (σ′′C ,V ′′C). Define the corresponce relation ∼C between σC and σ′′C to be such that,
for any C ∈ C, o ∈ σC and o′′ ∈ σ′′C , o ∼C o′′ iff there exists a o′ ∈ σ′C such that o ≈C o′ and
o′ ≈C o′′.

Then for any type τ , v ∈ [[τ ]]σC , v′ ∈ [[τ ]]σ′C and ν ′′ ∈ [[τ ]]σ′′C , if v ≈τ v′ and v′ ≈τ v′′ then
v ∼τ v′′.

Suppose C ∈ C, o ∈ σC , o′′ ∈ σ′′C are such that o ∼C o′′. Then o ≈C o′ and o′ ≈C o′′ for
some o′ ∈ σ′C . Hence VC(o) ≈τC V ′C(o′) and V ′C(o′) ≈τC V ′′C(o′′). Hence VC(o) ∼τC V ′′C(o′′).
Hence ∼C is a consistent correspondence between I and I ′′.

But, for every o ∈ σC there is an o′ ∈ σ′C such that o ≈C o′, and for every o′ ∈ σ′C there is
an o′′ ∈ σ′′C such that o′ ≈C o′′. So for every o ∈ σC there is an o′′ ∈ σ′′C such that o ∼C o′,
and, since ∼C is a consistent correspondence, o ≈C o′′. Similarly for every o′′ ∈ σ′′C there is an
o ∈ σC such that o ≈C o′′.

Hence I ≈ I ′′.

Proposition 9.3: For each equivalence class [I]≈ there is an I ′ ∈ [I]≈, unique up to isomorphism,
such that, for any I ′′ ∈ [I]≈ there is a unique homomorphism, fC from I ′′ to I ′. Such an I ′ is



9 BISIMULATION AND OBSERVATIONAL EQUIVALENCE WITHOUT EQUALITY 45

said to be a canonical representative of [I]≈.

Proof: Suppose I = (σC ,VC) is an instance of S. We must first build an I ′ such that I ≈ I ′,
and for any I ′′ such that I ′′ ≈ I ′, there is a unique homomorphism from I ′′ to I ′.

Consider the bisimulation correspondence I ≈C
I (which we will simplify to ≈C). Note that, for

each C, ≈C is an equivalence relation on σC : to see this observe that the equivalence relations
generated by the binary relations ≈C , ≈C∗ say, themselves form a consistent correspondence on
I, and hence (≈C∗) ⊆ (≈C) for each C ∈ C.

For each C ∈ C define σ′C ≡ σC/≈C : the ≈C-equivalence classes of σC . For any value v ∈ [[τ ]]σC

we define an object ṽ ∈ [[τ ]]σ′C using the following induction on types:

1. If v ∈ [[b]]σC , b ∈ B, then ṽ ≡ v

2. If v ∈ [[C]]σC , C ∈ C, that is v ∈ σC , then ṽ ≡ [v]≈C , where [v]≈C ∈ σ′C is such that
v ∈ [v]≈C .

3. If v ∈ [[(a1 : τ1, . . . , an : τn)]]σC then ṽ(ai) ≡ ṽ(ai) for i = 1, . . . , n.

4. If v ∈ [[〈|a1 : τ1, . . . , an : τn|〉]]σC , say v = (ai, w), then ṽ = (ai, w̃).

5. If v ∈ [[{τ}]]σC then ṽ = {w̃|w ∈ v}.

Then for any type τ and u, v ∈ [[τ ]]σC , u ≈τ v iff ũ = ṽ.

For each C ∈ C define V ′C by V ′C([o]≈C ) ≡ ˜VC(o). From the above V ′C is well defined since ≈C

is consistent.

Let I ′ be the instance I ′ = (σ′C ,V ′C). Then define the correspondece ∼C between I and I ′ such
that o ∼C o′ iff o ∈ o′. Then ∼C is a consistent correspondence. Further, for each o ∈ σC there
is an o′ ∈ σ′C such that o ∼C o′, and for each o′ ∈ σ′C there is an o ∈ σC such that o ∼C o′.
Hence I ≈ I ′. Further for any o′1, o

′
2 ∈ σ′C , if o′1 ≈C o′2 then o′1 = o′2.

Suppose I ′′ = (σ′′C ,V ′′C) is such that I ′′ ≈ I. Then I ′′ ≈ I ′. For each C ∈ C define the
function fC : σ′′C → σ′C as follows: for any o′′ ∈ σ′′C choose o ∈ σ′C such that o′′ ≈C o′ and
let fC(o′′) = o′. fC is well defined since, if o′′ ≈C o1 and o′′ ≈C o2 then o1 ≈C o2 and hence
o1 = o2. Further fC is a homomorphism from I ′′ to I ′.

Suppose hC is a homomorphism from I ′′ to I ′. Then we can form a consistent correspondence
∼C between I ′′ and I ′ by taking o′′ ∼C o′ iff o′ = hC(o′′). Hence for each C ∈ C, each o′′ ∈ σ′′C ,
o′′ ≈C hC(o′′), and so hC(o′′) = fC(o′′). Hence hC = fC and fC is the unique homomorphism
from I ′′ to I ′.

It remains to show that I ′ is the unique-up-to-isomorphism instance satisfying these properties.
Suppose that I ′′ is another instance satisfying these properties. Then there exists a homomor-
phism fC from I ′′ to I ′, and a homomorphism gC from I ′ to I ′′. We can form a homomorphism,
hC from I ′ to itself by taking hC = fC ◦ gC for C ∈ C. But the family of identity maps IdC is a
homomorphism from I ′ to itself, so we get hC = IdC , and hence fC ◦ gC = Idσ′C for each C ∈ C,



46 PART II. OBSERVABLE PROPERTIES OF MODELS

where Idσ′C denotes the identity function on σ′C. Similarly gC ◦ fC = Idσ′′C for C ∈ C. Hence
I ′ and I ′′ are isomorphic.

The canonical representative of an equivalence class [I]≈ is therefore an instance I ′ in which any
bisimilar object identities are coalesced into a single object identity: for every object identity in
I, o ∈ σC say, there is a unique object identity in I ′, o′ ∈ σ′C , such that o I≈I′ o′.

9.2 Distinguishing Instances without Equality on Identities

We now introduce a variant on the language SRI(=), which we will call simply SRI. This is the
same as the language SRI(=) only without the =C predicates on object identities. So SRI gives
us no way of directly comparing object identities.

We will show that observational indistinguishability of instances in SRI coincides with the bisim-
ulation correspondence on instances, ≈, defined in definition 9.2, and, further, that the relation
≈I on values of an instance I can be computed using SRI.

Indistinguishable Instances in SRI

Lemma 9.4: If I and I ′ are two instances of a schema S such that I ≈ I ′ then I and I ′ are
indistinguishable in SRI.

Proof: Assume that I and I ′ are such that I ≈ I ′. We need to show that, for any SRI query
e, V [[e]]I = V [[e]]I ′. Note that, for a ground type τ , ≈τ coincides with equality. We will show
that for any closed expression e such that ` e : τ , V [[e]]I ≈τ V [[e]]I ′.

We must first expand the definition of ≈τ to function types. Suppose f ∈ [[τ → T ]]I and
g ∈ [[τ → T ]]I ′. We say f ≈τ→T g iff for any u ∈ [[τ ]]I and v ∈ [[τ ]]I′ if u ≈τ v then fu ≈T gv.

Now it suffices to show that, if e is any SRI expression, ` e : T , and ρ ∈ Env(I) and ρ′ ∈ Env(I ′)
are environments such that dom(ρ) = dom(ρ′) and, for each variable xτ ∈ dom(ρ), ρ(xτ ) ≈τ
ρ′(xτ ), then

V [[e]]Iρ ≈T V [[e]]I ′ρ′

The proof proceeds by induction on the structure of SRI expressions and is similar to the proof
of lemma 8.1.

Lemma 9.5: If I and I ′ are indistinguishable in SRI then they are bisimilar, I ≈ I ′.

Proof: Suppose otherwise: that is there exist instances I and I ′ such that I 6≈ I ′ but, for every
query e, V [[e]]I = V [[e]]I ′. We can assume without loss of generallity that for some class C ∈ C
there is an o ∈ σC such that there is no o′ ∈ σ′C for which o ≈ o′.

Given any type, τ , value v ∈ [[τ ]]I and expression e such that ` e : τ , we define a series of
expressions Testi(v)[e], for i ∈ IN, such that ` Testi(v)[e] : Bool. We define Testi(v)[e] by
co-induction on i and on the type of v:



9 BISIMULATION AND OBSERVATIONAL EQUIVALENCE WITHOUT EQUALITY 47

For any value v and expression e, Test0(v)[e] ≡ tt.

For i ≥ 1:

1. If v ∈ [[int]]I = IN then Testi(v)[e] ≡ (e = v).

2. If v ∈ [[Bool]]I then if v = T then Testi(v)[e] ≡ (e) otherwise Testi(v)[e] ≡ (¬e).

3. If v ∈ [[unit]]I then Testi(v)[e] ≡ (tt).

4. If v ∈ [[C]]I then Testi(v)[e] ≡ Testi−1(VC(v))[!e]

5. If v ∈ [[(a1 : τ1, . . . , an : τn)]]I then Testi(v)[e] ≡ (Testi(v(a1))[e.a1]∧. . .∧Testi(v(an))[e.an])

6. If v ∈ [[〈|a1 : τ1, . . . , an : τn|〉]]I, say v = (al, u) then Testi(v)[e] ≡ (case e of a1(x1) ⇒
ff, . . . , al(xl) ⇒ Testi(u)[xl], . . . , ak(xk) ⇒ ff)

7. If v ∈ [[{τ}]]I, say v = {u1, . . . , un}, then Testi(v)[e] ≡ ((∃x ∈ e · Testi(u1)[x])∧ . . .∧ (∃x ∈
e · Testi(un)[x]) ∧ (∀x ∈ e · (Testi(u1)[x] ∨ . . . ∨ Testi(un)[x]))).

Intuitively, for any expression e and value v, V [[Testi(v)[e]]]Iρ = T iff the value V [[e]]Iρ cannot
be distinguished from v using i− 1 levels of dereferencing of object-identities.

Then for each C ∈ C, each o ∈ σC and any i ∈ IN we have V [[∃x ∈ C · Testi[o](x)]]I = T. Hence,
since I and I ′ are indistinguishable, V [[∃x ∈ C · Testi[o](x)]]I ′ = T for all i. And so for each
C ∈ C, o ∈ σC , we can form a decreasing series of finite non-empty sets Eio ⊆ σ′C defined by

Eio ≡ {o′ ∈ σ′C | V [[Testi(o)[x]]]I ′(x 7→ o′) = T}

That is Ei+1
o ⊆ Eio and Eio 6= ∅ for all i ∈ IN.

We can then build a series of correspondence relations ∼C
i , i ∈ IN such that, for any C ∈ C,

o ∈ σC and o′ ∈ σ′C , o ∼Ci o′ iff o′ ∈ Eio.

Then, for each C ∈ C, o ∈ σC it follows that {o′ ∈ σ′C |o ∼Ci+1 o
′} ⊆ {o′ ∈ σ′C |o ∼Ci o′} 6= ∅.

So we can form a correspondence ∼C
∞, defined by ∼C∞≡

⋂∞
i=1 ∼Ci , such that for each o ∈ σC the

set {o′ ∈ σ′C |o ∼C∞ o′} is non-empty. It remains to show that this correspondence relation is
consistent.

Observe that, for any C ∈ C, o ∈ σC , o′ ∈ σ′C , if i ≥ 1 and o ∼Ci o′ then VC(o) ∼τC

i−1 V ′C(o′).

Also observe that each of the operators used in raising correspondence relations to general
types in definition 9.1 was a continuous operator with respect to the set-inclusion ordering on
correspondence relations. Hence, for any general object type τ , (∼τ∞) =

⋂∞
i=1(∼τi ).

Hence, if o ∈ σC , o′ ∈ σ′C are such that o ∼C∞ o′, then o ∼Ci o′ for all i ∈ IN, so VC(o) ∼τC

i−1 VC(o′)
for all i ≥ 1, and so VC(o) ∼τC

∞ VC(o′).

Hence ∼C
∞ is a consistent correspondence relation: a contridiction. Hence result.



48 PART II. OBSERVABLE PROPERTIES OF MODELS

Proposition 9.6: Two instances, I and I ′, are indistinguishable in SRI if and only if I ≈ I ′.

Proof: This follows directly from lemmas 9.4 and 9.5.

Claim: In any reasonably expressive query language, L, such that L does not support any
means of directly comparing object identities, observational indistinguishability of instances in
L will coincide prescisely with bisimilarity.

Justification: First note that SRI is at least as expressive as any other established query language
which does not support comparisons of object identities. Lemma 9.4 automatically holds for
any query languages less expressive than SRI.

The proof of lemma 9.5 relies on being able to create queries which unfold nested values to
any fixed finite height. We observe that any query language equipped with constructors and
destructors for each of the basic types, basic logical operators and equality tests on each base
type can express such finite unfoldings and tests of values. We claim that such operators will
be present in any reasonable query language for nested or recursive data-structures.

Testing for Correspondence in SRI

Proposition 9.7: Using SRI we can test for the bisimulation correspondence relation described in
section 9.1: that is, for any type τ , and any values u and v, u, v ∈ [[τ ]]I, we can form a function
expression Corτ : (τ × τ) → Bool such that V [[Cor]]I(u, v) = T iff u ≈τ v.

(The notation τ × τ ′ represents a Cartesian product and is not actually a type constructor in
our model, but can be considered to be a notational abbreviation for a record constructor with
two attributes: (#1 : τ,#2 : τ ′)).

This result tells us that SRI has the same expressive power as SRI(≈) (the language SRI aug-
mented with predicates for testing ≈).

Proof: We will show how to build such a function in the case where the schema, S, contains
only one class, C, though again the definition can be easily extended for the case when there
are many classes.

First we will define some more “macros” for SRI:

Map(f,X) ≡ sri(λx · λY · add(fx, Y ), ∅, X)
Flatten(X) ≡ sri(λx · λY · x ∪ Y, ∅, X)
Prod(X,Y ) ≡ sri(λx · λz · sri(λy · λw · add((x, y), w), z, Y ), ∅, X)

UnionProd(X,Y ) ≡ Map(λx · x.#1 ∪ x.#2, Prod(X,Y ))

Here Map and Flatten are the standard operators. Prod is the cartesian product operator, and
UnionProd maps the union operator over the cartesian product of two sets.

For each object type τ we construct a function Checkτ : (τ × τ) → {{C × C}} such that, if
Checkτ (e, e′) = X, then [[e]] ≈τ [[e′]] iff, for some set Y ∈ X, o ≈C o′ for each pair (o, o′) ∈ Y .



9 BISIMULATION AND OBSERVATIONAL EQUIVALENCE WITHOUT EQUALITY 49

Note that, if Checkτ (e, e′) = ∅ then [[e]] 6≈ [[e′]], and if Checkτ (e, e′) = {∅} then [[e]] ≈ [[e′]]. We
will give some of the cases in the definition of Checkτ .

Checkunit(e, e′) ≡ {∅}
CheckBool(e, e′) ≡ if(e=̇e′, {∅}, ∅)

CheckC(e, e′) ≡ {{(e, e′)}}
Check(a1:τ1,...,ak:τk)(e, e′) ≡ UnionProd(Checkτ1(e.a1, e

′.a1),UnionProd(. . . ,
Checkτk(e.ak, e′.ak)) . . .)

Check〈|a1:τ1,...,ak:τk|〉(e, e′) ≡ case eof a1(x1) ⇒ (case e′of a1(y1) ⇒ Checkτ1(x1, y1),
a2(y2) ⇒ ∅, . . . , ak(yk) ⇒ ∅),

ak(xk) ⇒ (case e′of a1(y1) ⇒ ∅, . . . , ak−1(yk−1) ⇒ ∅,
ak(yk) ⇒ Checkτk(xk, yk))

Check{τ}(e, e′) ≡ sri(λx · λZ · Map(λy · Map(λW ·
UnionProd(Checkτ (x, y),W ), Z), e′), ∅, e)

The next step is a function IterChk : {C×C} → {{C×C}} which iterates the function Checkτ
C

over a set.

IterChk(Y ) ≡ sri(λx · λZ · UnionProd(Checkτ
C
(!(x.#1), !(x.#2)), Z), ∅, Y )

The function Unfold : {{C × C}} → {{C × C}} applies IterChk to each element in a set and
flattens the result.

Unfold(Z) ≡ Flatten(Map(λx · IterChk(x), Z))

So a pair of expressions, e and e′, can be shown not to be bisimilar using N levels of dereferencing
iff the result of applying Unfold to Check(e, e′) N times is the empty set. But we know that, if
e and e′ are not bisimilar then they can be shown not to be bisimilar in less than |σC | steps. So
we define

TestCorτ (e, e′) ≡ sri(λx · λZ · Unfold(Z),Checkτ (e, e′), C)

Finally we can use this set in testing for ≈-equivalence of values:

Corτ (e, e′) ≡ (∃x ∈ TestCorτ (e, e′) · )

Then [[Corτ (e, e′)]] = T iff [[e]] ≈τ [[e′]].

This result tells us that SRI has the same expressive power as SRI(≈) (the language SRI aug-
mented with predicates for testing ≈).

This result is a little surprising since our values are recursive, and we can not tell how deeply
we need to unfold two values in order to tell if they are bisimilar.

We are saved by the fact that all our object identities come from a fixed set of finite extents. The
cardinality of these extents provide a bound on the number of unfoldings that must be carried



50 PART II. OBSERVABLE PROPERTIES OF MODELS

out: if no differences between two values can be found after
∑
{|C| | C ∈ C} dereferencings

of object identifiers, then the values are equivalent. Consequently we can implement Cor by
iterating over each class, and for each identifier in a class unfolding both values.

Unfortunately this implementation of ≈ seems to go against our philosophy of the non-observ-
ability of object identities: if we can’t observe object identities then should we be able to count
them? From a more pragmatic standpoint, a method of comparing values which requires us to
iterate over all the objects in a database is far too inefficient to be practical, especially when
dealing with large databases, and we would like to have algorithms to compare values which
take time dependent on the size of the values being compared only. We would therefore like to
know if we can test for ≈ without iterating over the extents of an instance. In the following
subsection we will show that this is not possible in general.

N-Bounded Values and SRIN

A value v is said to be N-bounded iff any set values occuring in v have cardinality at most N .
An instance I is N-bounded iff for each class C ∈ C and every o ∈ σC ,V(o) is N -bounded.

Note that, for any instance I there is an N sufficiently large that I is N -bounded.

We now define a variant of the language SRI which has the same power as SRI when restricted
to N -bounded values, but which will not allow recursion over sets of cardinality greater than N .

The language SRIN is the same as the language SRI except that an expression sri(f, e, u) is not
defined if |V [[u]]I | is greater than N .

Proposition 9.8: It is not in general possible to compute the correspondence relations ≈ on
N -bounded instances using the language SRIN . That is, there exists a schemas S and type τ
such that, for any expression Cor with ` Cor : τ × τ → Bool, either there is an N -bounded
instance I and values u and v, u, v ∈ [[τ ]]I, such that V [[Cor]]I(u, v) = T and u 6 ≈τv, or there is
an N -bounded instance I and values u, v ∈ [[τ ]]I such that V [[Cor]]I(u, v) = F and u ≈τ v.

Proof: First note that for any SRIN expression e, there is a constant ke, such that any evaluation
of an application of e will involve less than ke levels of dereferencing of objects. Consequently
it is enough to construct a schema with a recursive structure such that, for any constant k, we
can construct an instance containing two objects which require k + 1 dereferences in order to
distinguish between them.

For example one can take the schema S with one class C, such that S(C) = (#1 : Bool,#2 : C).
Then we can take I and I ′ both to have the same set of k + 1 object identities, σC = σ′C =
{o0, . . . , ok}, and VC(oi) = V ′C(oi) = (#1 7→ T,#2 7→ oi+1) for i = 0, . . . , k − 1, VC(ok) =
(#1 7→ T,#2 7→ o0) and V ′C(ok) = (#1 7→ F,#2 7→ o0). Then the object identity o0 can not
be distinguished with less than k + 1 dereferences.

This tells us that we can not hope to test if two values are equivalent without making use of
recursion over classes, from which we conclude that a more efficient way of comparing values is



10 OBSERVABLE PROPERTIES OF OBJECT IDENTITIES WITH KEYS 51

needed.

Claim: It is not possible to construct an expression to test whether two values of general type
are bisimilar in any reasonable query language without using recursion over the entire extents
of a database.

Justification: Once again it is sufficient to note that the result automatically holds for any
language less expressive than SRI and to argue that SRI is as expressive as any other established
query language pradigm.

10 Observable Properties of Object Identities with Keys

In sections 8.1 and 9.2 we presented two different query languages, based on different assumptions
about the predicates available for comparing values. The first, SRI(=), assumed that it was
possible to directly compare any two object identities for equality, and we showed that such a
predicate, together with a simple query language over complex objects, allowed us to compute
the equivalence relation = over all types, and was sufficient to distinguish between any two
non-isomorphic instances.

However object identities are abstract entities that do not directly represent data, and so we
would like to ensure that they can only be compared by means of their associated values. Our
second query language, SRI, was based on the idea that only base values could be directly
compared, and that other complex values and objects could be compared only by comparing
their component parts or associated values. In proposition 9.6 we showed that distinguishability
under such a language coincided precisely with the bisimulation relation on instances, ≈, defined
in 9.2. In proposition 9.7 we saw that such a bisimulation equivalence relation, ≈, on values
in an instance could be computed, but proposition 9.8 showed that doing so required a level of
unfolding bounded by the size of the instance, and therefore the ability to recurse over all object
identities in the instance. Allowing such a computation seems at odds with our premise, that
object identities, and hence the cardinality of a particular class of object identities, could not
be observed. From a more pragmatic perspective, it is clear that such an equivalence relation is
too expensive to use in a query language over databases, and a more efficient way of comparing
values and object identities is required. In particular, we want to be able to compare values in
time dependent on the values themselves and independent of the size of the database. In this
section we will propose a solution to this problem based on the systems of keys.

10.1 A Data-Model with Keys

In the model described so far, object identities represent abstract entities which can not be
directly observed, but which can only be viewed by examining the values associated with them.
However, in section 9 we saw that comparing and referencing object-idenitities only on the basis
of the printable values associated with them is not a practical proposition. It is necessary to have
some efficient means of uniquely identifying and referencing an object identity. One possible



52 PART II. OBSERVABLE PROPERTIES OF MODELS

solution, which is adopted by many practical database systems, is to use keys: simple values
that are associated with object identities, and are used to compare object identities. Two object
identities are taken to be the same iff their keys are the same.

Key Specifications

Definition 10.1: Suppose we have a schema S with classes C. A key specification for S consists
of a type κC for each C ∈ C, and a mapping KC from instances, I = (σC ,VC), of S to families
of functions

KCI : σC → [[κC ]]σC

for each C ∈ C.

Example 10.1: Consider the first schema described in example 7.1. We would like to say that a
State is determined uniquely by its name, while a City is determined uniquely by its name and
its state (one can have two Cities with the same name in different states). The types of our key
specification are therefore

κCity ≡ (name : str, state : State)
κState ≡ str

For an instance I = (σC ,VC) the mappings KC
I are given by

KCity
I (o) ≡ VCity(o)

KState
I (o) ≡ (VState(o))(name)

If we take I to be the instance described in example 7.2 then we have

KCity
I (Phila) = (name 7→ “Philadelphia”, state 7→ PA)

KCity
I (Pitts) = (name 7→ “Pittsburg”, state 7→ PA)

...
...

KCity
I (Albany) ≡ (name 7→ “Albany”, state 7→ NY)

and

KState
I (PA) = “Pennsylvania”

KState
I (NY) = “New York”

A key specification is said to be well-defined iff for any two instances, I and I ′, if fC is a family
of functions describing an isomorphism from I to I ′, then for each C ∈ C and each o ∈ σC ,

fκ
C
(KCI (o)) = KCI′(fC(o))



10 OBSERVABLE PROPERTIES OF OBJECT IDENTITIES WITH KEYS 53

Well-definedness simply ensures that a key specification is not dependent on the particular choice
of object identities in an instance, and will give the same results when applied to two instances
differing only in their choice of object identities. For the remainder we will assume that all key
specifications we consider are well-defined.

Two key specifications, KC and K′C , are said to be equivalent iff, for any instance I, any C ∈ C
and any o1, o2 ∈ σC , KCI (o1) = KCI (o2) if and only if K′C

I (o1) = K′C
I (o2).

Definition 10.2: The dependency graph, G(KC), of a key specification KC is a directed graph
with nodes C such that G(KC) contains the edge (C ′, C) if and only if the class C ′ occurs in κC .

For example, the dependency graph of the key specification of example 10.1 has nodes City and
State, and a single edge (City,State).

Proposition 10.1: For any key specification, KC , if the dependency graph G(KC) is acyclic then
there is an equivalent key specification K′C such that each type κ′C is ground (contains no
classes).

Proof: We proceed by induction on the maximum length of paths in G(KC). If the maximum
length of paths is 0 then each type κC , C ∈ C, is ground and we are done.

Suppose that the maximum length of paths in G(KC) is n ≥ 1. Let C∗ ⊆ C be the set of classes
C such that the maximum length of paths in G(KC) starting at C is 1.

For each C ∈ C∗ let κ∗C be the type formed by replacing C ′ with κC
′

in κC for each class C ′

occuring in κC . For any instance I = (σC ,VC), let K∗C
I : σC → [[κ∗C ]]I be the function such

that K∗C
I (o) is formed by replacing each object identity o′ ∈ σC

′
occuring in KCI (o) by KC′

I (o′)
in KCI (o).

For each C ∈ (C \ C∗) let κ∗C = κC and K∗C
I = KCI . Then K∗C is a key specification which is

equivalent to KC and the maximum length of a path in G(K∗C) is n−1. Hence, by the induction
assumption, there is a key specification K′C , equivalent to K∗C , such that every type in K′C is
ground.

We will see later that key specifications with acyclic dependencies graphs are particularly useful.

Key Correspondences

Definition 10.3: Given a key specification, KC and two instances I and I ′, we define the family
of relations ≈τK ⊆ [[τ ]]I × [[τ ]]I ′ to be the largest relations such that

1. if cb ≈bK c′b for c, c′ ∈ Db then c ≡ c′,

2. if x ≈(a1:τ1,...,ak:τk)
K y then x(ai) ≈τiK y(ai) for i = 1, . . . , k,

3. if (ai, x) ≈〈|a1:τ1,...,ak:τk|〉
K (aj , y) then ai = aj and x ≈τiK y,



54 PART II. OBSERVABLE PROPERTIES OF MODELS

4. if X ≈{τ}
K Y then for each x ∈ X there is a y ∈ Y such that x ≈τK y and for each y ∈ Y

there is an x ∈ X such that x ≈τK y, and

5. for each C ∈ C and any o ∈ σC , o′ ∈ σ′C , if o ≈CK o′ then KCI (o) II′≈κC

K KCI′(o′).

We will write II′≈K instead of ≈K in cases where the instances are not clear from context.

Note that for any set of families of relations, ∼τa, a ∈ A satisfying conditions 1–5 above, the
family of unions of the relations, (∼τ ) =

⋃
a∈A(∼τa), also satisfies conditions 1–5. Hence ≈τK is

well-defined.

Note: For any schema S, if we take the key specification given by κC ≡ τC for each C ∈ C, and
for any instance I = (σC ,VC) and each C ∈ C,

KCI ≡ VC

then the relations ≈τK and ≈τ relations are the same.

Given any instance I, we write I ≈C
K for II ≈C

K, or omit the I altogether when it is clear from
the context. ≈C

K is called the correspondence on I generated by KC .

Proposition 10.2: If KC is a key specification then, for any instance I and each type τ , ≈τK is an
equivalence relation on [[τ ]]I.

Proof: It is sufficient to observe that for any family of relations ∼τ⊆ [[τ ]]I × [[τ ]]I satisfying
conditions 1–5 of definition 10.3, the family of smallest equivalence relations containing the
relations ∼τ , ∼τ∗ say, also satisfy conditions 1–5. The result follows since ≈K is the largest
relation satisfying these conditions.

Definition 10.4: An instance I is said to be consistent with a key specification KC iff for each
C ∈ C, any o, o′ ∈ σC , if o ≈CK o′ then VC(o) ≈τC

K VC(o′).

Keyed Schema

Definition 10.5: A keyed schema is a pair consisting of a schema S and a key specification KC
on S. A simply keyed schema is a keyed schema (S,KC) such that the dependency graph of
KC is acyclic.

An instance of a keyed schema (S,KC) is an instance I of S such that I is consistent with KC .

Given two instances of a simply keyed schema, (S,KC), say I = (σC ,VC) and I ′ = (σC ,VC), we
say I is K-equivalent to I ′, and write I ≈K I ′ iff

1. For each C ∈ C, each o ∈ σC there is an o′ ∈ σ′C such that o ≈CK o′, and for each o′ ∈ σ′C
there is an o ∈ σC such that o ≈CK o′; and

2. For each C ∈ C, o ∈ σC and o′ ∈ σ′C, if o ≈CK o′ then VC(o) ≈τC

K V ′C(o′).



10 OBSERVABLE PROPERTIES OF OBJECT IDENTITIES WITH KEYS 55

Lemma 10.3: For any instances I and I ′ of a keyed schema (S,K), if I ≈K I ′ then ≈C
K is a

consistent correspondence between I and I ′.

Proof: Note that, the extension of the family of binary relations ≈C
K to a general type τ

described in definition 9.1 is equal to the relation ≈τK The result then follows from the definition
of K-equivalences of instances.

Proposition 10.4: For any two instances, I and I ′, of a simply keyed schema (S,K), if I ≈K I ′
then I ≈ I ′.

Proof: Follows immediately from the definition of ≈.

Note, however, that the converse is not true: there are simply keyed schema for which the key
equivalence is strictly finer than bisimulation of instances, as the following example demon-
strates.

Example 10.2: Let us consider the schema from example 7.1 once again, and the key specification,
K′C given by

κCity ≡ (name : str, state-name : str)
κState ≡ (name : str, cities : {City})

and

KCityI (o) ≡ (name 7→ (VCityo).name, state-name 7→ VState(VCity(o)(state))(name))
KStateI (o) ≡ (name 7→ VState(o)(name), cities 7→ {o′ ∈ σCity|VCity(o′)(state) = o})

So the key of a City is its name and the name of its State, and the key of a state is its name
and the set of its Cities.

PA2

NY

NYC

Albany

Phila

City

Pitts

State

Harris

PA1

capital

state

state

state

state

state

capital

capital

Figure 12: A database instance

Let us now construct a new instance, I ′, and compare it to the instance I defined in example 7.2.
I ′ is defined by:

σCity ≡ {Phila,Pitts,Harris,NYC,Albany}
σState ≡ {PA1,PA2,NY}



56 PART II. OBSERVABLE PROPERTIES OF MODELS

and the mappings are

VCity(Phila) ≡ (name 7→ “Philadelphia”, state 7→ PA1)
VCity(Pitts) ≡ (name 7→ “Pittsburg”, state 7→ PA2)
VCity(Harris) ≡ (name 7→ “Harrisburg”, state 7→ PA2)
VCity(NYC) ≡ (name 7→ “New York City”, state 7→ NY)

VCity(Albany) ≡ (name 7→ “Albany”, state 7→ NY)

and

VState(PA1) ≡ (name 7→ “Pennsylvania”, capital 7→ Harris)
VState(PA2) ≡ (name 7→ “Pennsylvania”, capital 7→ Harris)
VState(NY) ≡ (name 7→ “New York”, capital 7→ Albany)

This instance is illustrated in figure 12.

Then I and I ′ are bisimilar, I ≈ I ′, but then are not equivalent under the key specification
K′C , I 6≈K I ′.

10.2 Computing Key Correspondences

Given a keyed schema, (S,K), we define the language SRI(K) for the schema to be the language
SRI extended with new operators keyC for each C ∈ C. The typing rules for these new operators
are:

` e : C
` keyCe : κC

and the semantics are given by

V [[keyCe]]Iρ ≡ KCI (V [[e]]Iρ)

Similarly we define the language SRIN (K) as an extension of SRIN .

We get the same results for computability of key correspondences, ≈K, as we did for bisimulation
correspondence, namely

1. We can find a formula in SRI(K) to compute ≈τK for each type τ .

2. We cannot in general find a formula to compute ≈τK on N -bounded values in SRIN for any
N .

Further, we can once again argue that these results also hold for any other reasonable query
language supporting keys.

However the following result goes some way towards justifying our earlier statement that key
specifications with acyclic dependency graphs are of particular interest.



10 OBSERVABLE PROPERTIES OF OBJECT IDENTITIES WITH KEYS 57

Proposition 10.5: For any simply keyed schema (S,K) there is an M such that for any N ≥M ,
and any type τ , ≈τK can be computed on N -bounded values using SRIN (K). That is, for each
type τ , there is a formula CorτK of SRIN (K) such than ` CorτK : τ × τ → Bool and for any two
N -bounded values u, v ∈ [[τ ]]I, V [[CorτK]]I(u, v) = T iff u ≈τK v.

Proof: Suppose that k is the maximum length of a path in G(K). For i = 1, . . . , k + 1 define
Ci ⊆ C to be the set of classes C ∈ C such that there are no paths in G(K) of length i originating
from C. So Ck+1 = C, and for each C ∈ C1,

κC is ground. For convenience we take C0 = ∅. Then for each C ∈ Ci, i ≥ 1, every class C ′

occuring in κC is in Ci−1.

First we show that, if for every C ∈ Ci we have an expression CorCK, then for any type τ involving
only classes from Ci, we can form a formula CorτK. CorτK is defined by induction on τ . We only
present some of the cases, since they are simlar to previous proofs.

1. If τ ≡ b then CorτK ≡ (λ(x, y) · x =b y).

2. If τ ≡ C where C ∈ Ci then follows from out assumption.

3. If τ ≡ (a1 : τ1, . . . , an : τn) then Cor
(a1:τ1,...,ak:τk)
K ≡ (λ(x, y) · Corτ1K (x.a1, y.a1) ∧ . . . ∧

CorτkK (x.a1, y.a1))

Next we show by induction on i, that for any class C ∈ Ci, we can form a formula CorCK. The
base case, i = 0, is trivial. Suppose we have expressions CorC

′
K for each C ′ ∈ Ci−1, and C ∈ Ci.

Then we define
CorCK ≡ (λ(x, y) · Corκ

C

K (keyCx, keyCy))

Then for any values u, v ∈ [[τ ]]I, V [[CorτK]]I(u, v) = T iff u ≈τK v.

Claim: If (S,K) is a simply keyed schema, and L is some reasonably expressive query language,
then for any object type τ it is possible to construct an expression in L which tests whether any
two values of type τ are K-equivalent.

Justification: It suffices to convince ourselves that all the constructs and operators used to define
the operators CorτK in the proof of proposition 10.5 are things that one would expect to find
in any reasonable query language. In particular we do not need to resort to iterating over the
extents of a database.

10.3 A Summary of Observational Equivalence Relations

We have seen that there are a variety of different observational equivalences possible on recur-
sive database instances using object identities, and that the observational equivalence relation
generated by a particular query system is dependent on the means of comparing object identities
in that system. In section 8.2 we showed that, in a query language supporting an equality test
on object identities, two instances are observationally indistinguishable if and only iff they are



58 PART II. OBSERVABLE PROPERTIES OF MODELS

isomorphic, that is they differ only in their choice of object identities. Further, in such a lan-
guage, it is straight forward to construct efficient equality tests on values of general data-types.
However, although we know that any two non-isomorphic instances are distinguishable, propo-
sition 8.4 tells us that it is not in general possible to find a query which distinguishes between
them.

Language Observational equivalences
computable on values

Observational equivalence on
instances

SRI(=)
SRI with equality test on
object-identities

=τ — equality on all types ∼= — isomorphism

SRI(K)
K an acyclic key specifica-
tion

≈τ
K — key correspondence ≈K — key correspondence

SRI(K)
K a general key specification

≈τ
K — key correspondence

(computing requires recur-
sion over extents of object-
identifiers)

≈K — key correspondence

SRI
SRI with no comparisons on
object-identities

≈τ — bisimulation
(computing requires recur-
sion over extents of object-
identifiers)

≈ — bisimulation

Figure 13: A summary of the operators considered and the resulting observational equivalences

Equality of object identities does not always coincide with equivalence of the data represented,
since databases may contain duplicate data, or may represent the same data using a variety
of different structures. For example, when integrating multiple databases, different objects
representing the same data may arrise from distinct sources. Consequently we would like to
be able to compare database instances and data occuring in an instance, by comparing the
observable values in the database only. In section 9 we showed that, in a resonable query language
without support for any direct comparisons of object identities, observational distinguishability
of databases coincides with the bisimulation relation ≈, and, if a query language provides the
ability to iterate over the entire extents of a database, it is possible to test whether any two
values in a database are bisimilar.

In sections 8 and 9 we argued that isomorphism and bisimulation were respectively the finest and
the coarsest equivalence relations on instances that one might hope to observe. In this section
we showed that systems of keys generate various observational equivalences lying between these
two. Further acyclic key specifications provide us with an efficient means of comparing and
referencing recursive values which incorporate object identities, without having to examine the
object identities directly. These results are summarized in figure 13.



11 A DATA MODEL BASED ON REGULAR TREES 59

11 A Data Model Based on Regular Trees

The concept of object-identities provides a useful abstraction of the reference mechanisms used
in representing complex or recursive data-structures in a database. However such reference
mechanisms are normally internal to a database system, and may not be directly accessed or
observed by a user. In particular object identities do not represent part of the data being
modeled in a database, and the data being modeled does not depend on the choice of object
identities used. Consequently we would like to deal with data-models where object-identities
are not considered to be directly visible.

We would like to construct a data-model which coincides precisely with the observable properties
of a database: two instances or values in an instance should be equal in the model precisely
when they can not be distinguished by any query in some underlying query language. Such a
model would give us insight into the expressive power and richness of a database system, which
an overly fine model of instances, such as that introduced in definition 7.3, fails to capture.

One approach to this problem is to develop an observational equivalence relation on instances,
representing when two instances are observationally indistinguishable, and to consider equiva-
lence classes of instances rather than individual instances. This approach was investigated in
sections 8, 9 and 10 for various different assumptions about the available query language. How-
ever this approach still makes it difficult to divorce the information represented by an instance
from the mechanisms used to represent the information, and does not provide us with a clear
view of the observable information captured by a specific database.

In this section we will present a model sharing definition 7.1 of types and schemas, but in which
instances are based on the idea that the only observable values are those of base-type (integers,
strings and so on), and those constructed from other observable values using set, record and
variant constructors. Such a value-based model was proposed in [2].

The model will use regular trees in order to represent values and instances. The idea of regular
trees is that they capture those infinite trees with finite representations, and consequently can be
thought of as finite trees with cycles ([15]). Though it is fairly easy to form an intuitive under-
standing of regular trees, based on diagrammatic representations, to formulate them rigorously
requires a surprising amount of care. This is in part due to the use of sets in our data-model, and
consequently having to deal with trees in which the branches may not have distinct labels. It’s
suggested that readers who feel comfortable with the concept of regular trees skip the technical
details in the next couple of sub-sections.

11.1 Regular Trees

Definition 11.1: A tree domain, D ⊆ IN∗, is a set of non-empty strings of natural numbers, such
that

1. if φi ∈ D, i > 1, then φ(i− 1) ∈ D, and



60 PART II. OBSERVABLE PROPERTIES OF MODELS

2. if φi ∈ D, φ a non-empty string, then φ ∈ D.

Suppose A is some set. A tree over A is a function from some tree domain, D, to A.

We write Tree(A), for the set of trees over A, and say that A is the alphabet of the trees in
Tree(A).

Suppose t ∈ Tree(A) is a tree and φ ∈ IN∗ is a string such that φ ∈ dom(t). We write t.φ for
the tree

t.φ(x) ≡ t(φx)

We say t.φ is the projection of t on φ.

Given two trees, t and t′, we say t′ is a subtree of t iff there is a φ ∈ dom(t) such that t′ = t.φ.

Definition 11.2: A regular tree is a tree with only finitely many subtrees.

There several ways of constructing regular trees: one can view them as directed graphs with
edges marked by elements of the alphabet, together with some distinguished node, known as the
root, such that there is a directed path from the root to each node in the graph. An example of
such a graph is shown below:

?

S
S

SSw

�
�

��/

S
Sw �

-

•

•

• •

a

b cd
e

Alternatively we can view a regular tree as being defined by a system of equations over string
variables and patterns:

T1 = a.T2

T2 = b.T3|c.T4

T3 = d.T2

T4 = e.T3

In this case the previous regular tree is represented by the string variable T1. The operator |
represents choice: either T2 = b.T3 or T2 = c.T4.

There are a number of other equivalent representations as well. In general we will use directed
graphs in order to give an intuitive representation of regular trees. See [15] for further details.



11 A DATA MODEL BASED ON REGULAR TREES 61

Bisimulation of Regular Trees

We do not want to distinguish between two regular trees if they differ only in the ordering or
multiplicity of their edges. We therefore need to construct an equivalence relation on trees which
captures when we consider two regular trees to be the same.

We define the binary relation � on regular trees over A to be the largest relation such that, if
t1 � t2 then

1. if i ∈ dom(t1) (i a string of length 1), then there is a j ∈ dom(t2) such that t1(i) = t2(j)
and t1.i � t2.j, and

2. if j ∈ dom(t2) then there is an i ∈ dom(t1) such that t1(i) = t2(j) and t1.i � t2.j.

If t1 � t2 we say that t1 and t2 are bisimilar and we will be treating them as the same tree.

In some sense, the need to equate regular trees which are bisimilar here is bought about because
we are dealing with data-models based on sets: if we considered regular trees to be distinct when
they differed in the ordering or multiplicity of edges we would arrive at a similar data-model
based on lists instead of sets. As such, bisimulation may be thought of as encoding the properties
of finite sets at this point.

Constructors for Trees

Suppose t1, . . . , tk are trees, and α1, . . . , αk are elements of the alphabet. Then 〈α1t1, . . . , αktk〉T
is the tree given by

dom(〈α1t1, . . . , αktk〉T ) ≡
k⋃
i=1

{iφ | φ ∈ dom(ti)} ∪
k⋃
i=1

{i}

and

〈α1t1, . . . , αktk〉T (i) ≡ αi

for i = 1, . . . , k, and

〈α1t1, . . . , αktk〉T (iφ) ≡ ti(φ)

for i = 1, . . . , k and φ ∈ dom(ti).

We write 〈α1t1, . . . , αktk〉 for the �-equivalence class containing 〈α1t
′
1, . . . , αkt

′
k〉T , where t′i is a

representative of the �-equivalence class ti, for i = 1, . . . , k. We write ε for the �-class consisting
of the tree with empty domain. For the remainder we will refer to these equivalence classes as
regular trees, and, when dealing with regular trees, will consider them to be representatives of
their �-equivalence classes.



62 PART II. OBSERVABLE PROPERTIES OF MODELS

11.2 Trees of Types

Suppose S is a schema with classes C such that, for each C ∈ C, S(C) = τC .

We will be interested in regular trees over an alphabet with the elements

1. the symbol ∈̇,

2. for each attribute label a ∈ A, the symbols πa and insa,

3. for each C ∈ C a symbol StC , and

4. for each base type b ∈ B and each c ∈ Db a constant symbol cb.

Definition 11.3: We define the mapping TTreeS from types to sets of regular trees over this
alphabet to be the largest such that:

1. if t ∈ TTreeS(b) then t = 〈cbε〉 for some constant symbol cb ∈ Const(b),

2. if t ∈ TTreeS((a1 : τ1, . . . , ak : τk)) then t = 〈πa1t1, . . . , πak
tk〉 where ti ∈ TTreeS(τi) for

i = 1, . . . , k.

3. if t ∈ TTreeS(〈|a1 : τ1, . . . , ak : τk|〉) then t = 〈insai t
′〉 where t′ ∈ TTreeS(τi) for some

i ∈ 1, . . . , k.

4. if t ∈ TTreeS({τ}) then t = 〈∈̇t1, . . . , ∈̇tk〉 where k ≥ 0 and ti ∈ TTreeS(τ) for i = 1, . . . , k.

5. if t ∈ TTreeS(C) then t = 〈SCTgtt
′〉 where t′ ∈ TTreeS(τC).

TTreeS(τ) represents the set of all regular trees of type τ for the schema S.

Informally these definitions can be interpreted as:

1. A tree of base type has one branch, labeled by a constant symbol, which goes to the empty
tree;

2. A tree of record type (a1 : τ1, . . . , ak : τk) has k branches, labeled πa1 to πak
, going to trees

of types τ1 to τn respectively;

3. A tree of variant type 〈|a1 : τ1, . . . , an : τn|〉 has one branch, labeled insai for some i, going
to a tree of type τi;

4. A tree of set type {τ} has finitely many branches, each labeled by ∈̇ and each going to a
tree of type τ ; and

5. A tree of class type C has one branch, labeled by SCTgt, going to a tree of type τC .



11 A DATA MODEL BASED ON REGULAR TREES 63

11.3 Instances

Definition 11.4: A (regular tree) instance, ωC , of a schema S consists of a family of finite sets
of regular trees, ωC ⊆ TTreeS(C), for each C ∈ C.

A regular tree, t, is said to be a value of type τ iff t ∈ TTreeS(τ).

A regular tree t is said to be valid for an instance ωC iff for each C ∈ C and each subtree t′ of t
of type C, t′ ∈ ωC .

An instance ωC is said to be valid iff for each C ∈ C and each t ∈ ωC , t is valid for ωC .

We write RInst(S) for the set of valid regular tree instances of a schema S.

Example 11.1: Let us consider an instance for the schema described in example 7.1. The

C
CCW

?

A
A
A
AAU










�










�

A
A
A
AAU

??

� �

?

C
CCW

�
�

�
���

�
�

�
���

ωState

•

•

•

StState

“Pennsylvania”

πname πcapital πstate
πname πcapital

“New York”

•

•

••

StCity StCity

•
StState

πstate

πname

“Albany”“Harrisburg”

πname

Figure 14: States from instance

instance consists of two sets, ωState and ωCity. The set ωState contains the regular trees shown
in figure 14 representing the states New York and Pennsylvania. Pennsylvania has the string
“Pennsylvania” as its name, and a tree representing the city Harrisburg as its capital, while
New York has the string “New York” as its name, and a tree representing the city Albany as
its capital. The tree representing Harrisburg in turn has the string “Harrisburg” as its name,
and the tree representing Pennsylvania as its state. Note that there is a loop in the tree at
this point: in fact this is a finite representation of an infinite regular tree. The set ωCity will
also contain a number of regular trees, such as the one shown in figure 15 representing the city
Philadelphia. However, in order to be a valid instance, ωCity must at least contain regular trees



64 PART II. OBSERVABLE PROPERTIES OF MODELS

?

�
�

�	

•

•
StCity

πname

“Harrisburg”

S
S

Sw

�
�

�	

C
CCW

?

?

S
S

SSw

�

�
�

��	

•

•
StCity

“Philadelphia”

πname

•

•
StState

πstate
πname

“Pennsylvania”

πstate

πcapital

Figure 15: Cities from instance

for Harrisburg and Albany.

11.4 Mapping Between Regular Tree and Object-Identity Based Models

In this section we will show that there is a one-to-one correspondence between the ≈-equivalence
classes of the object-identity based instances of a schema of definition 7.3 and the regular tree
based instances of definition 11.4.

Mapping from Object-Identities to Regular Trees

Suppose I = (σC ,VC) is an instance of schema S. For each type τ we define the mapping treeτI
from [[τ ]]σC to regular trees, by:

tree
b
I(c) ≡ 〈cbε〉

tree
(a1:τ1,...,ak:τk)
I (x) ≡ 〈πa1tree

τ1
I (x(a1)), . . . , πak

tree
τak
I (x(ak))〉

tree
〈|a1:τ1,...,ak:τk|〉
I (ai, x) ≡ 〈insai treeτiI (x)〉

tree
{τ}
I ({x1, . . . , xk}) ≡ 〈∈̇treeτI(x1), . . . , ∈̇treeτI(xn)〉

treeCI (o) ≡ 〈StCtreeτ
C

I (VC(o))〉



11 A DATA MODEL BASED ON REGULAR TREES 65

Lemma 11.1: For any type τ if v ∈ [[τ ]]σC then treeτI(v) ∈ TTreeS(τ).

Proof: For each type τ define the set of regular trees T τ by

TC ≡ {treeCI (o) | o ∈ σC}
T b ≡ {〈cbε〉 | c ∈ Db}

T (a1:τ1,...,ak:τk) ≡ {〈πa1t1, . . . , πak
tk〉 | ti ∈ T τi for i = 1, . . . , k}

T 〈|a1:τ1,...,ak:τk|〉 ≡ {〈insaiti〉 | i ∈ 1, . . . , k and ti ∈ T τi}
T {τ} ≡ {〈∈̇t1, . . . , ∈̇tn〉 | ti ∈ T τ for i = 1, . . . , n, n ∈ IN}

Then, for any x ∈ [[τ ]]I, treeτI(x) ∈ T τ . Further the family of sets T τ satisfy conditions 1–5 of
definition 11.3, and so T τ ⊆ TTreeS(τ) for every type τ . Hence result.

The mapping tree from object-identity based instances, Inst(S), to regular tree based instances,
RInst(S), is given by

tree : I 7→ ωC

where
ωC ≡ {treeCI (o) | o ∈ σC}

for C ∈ C.

From lemma 11.1 we can see that tree(I) is indeed a valid regular-tree instance of S for any
I ∈ Inst(S).

Mapping from Regular Trees to Object-Identities

Suppose ωC is a regular tree instance of a schema S.

Assume we have some ordered, countably infinite set from which to pick object identifiers.5

For each C ∈ C, and each ν ∈ ωC , pick an object identifier oν to associate with ν. (If we
use a lexicographical ordering on the elements of ωC and the ordering on our set of potential
object-identifiers then this can be done in a deterministic way).

We can form a family of object identifier sets, σC by

σC ≡ {oν | ν ∈ ωC}

Then for each type τ we define the mapping instτωC from TTreeS(τ) to values from [[τ ]]σC by

inst
b
ωC(〈cbε〉) ≡ c

inst
(a1:τ1,...,ak:τk)
ωC (〈πa1ν1, . . . , πakνk〉) ≡ (a1 7→ instτ1

ωC(ν1), . . . , ak 7→ instτk
ωC(νk))

inst
〈|a1:τ1,...,ak:τk|〉
ωC (〈insaiν〉) ≡ (ai, instτi

ωC(ν))

inst
{τ}
ωC (〈∈̇ν1, . . . , ∈̇νk〉) ≡ {instτωC(νi) | i = 1, . . . , k}

instCωC(ν) ≡ oν

5a gumball machine



66 PART II. OBSERVABLE PROPERTIES OF MODELS

For each C ∈ C define the mapping VC : σC → [[τC ]]σC by

VC(oν) ≡ instτ
C

ωC (ν ′) where ν = 〈StCν ′〉

For any regular tree instance, ωC , we define the object-identity instance inst′(ωC) by

inst′(ωC) ≡ (σC ,VC)

where σC and VC are as described above.

The mapping inst from regular tree instances RInst(S) to equivalence classes of object-identity
instances, Inst(S)/ ≈ is given by

inst(ωC) ≡ [inst′(ωC)]≈

Lemma 11.2: If I ≡ (σC ,VC) is an object-identity instance, I ∈ Inst(S), then inst′(tree(I)) ≈ I.

Proof: Define ∼C to be the smallest correspondence relation between inst′(tree(I)) and I such
that instC(treeCI (o)) ∼C o for each C ∈ C, o ∈ σC .

Suppose tree(I) = ωC and I ′ = inst′(ωC). We prove that, for any type τ and u ∈ [[τ ]]σC ,
instτωC(treeτI(u)) ∼τ u. We will present some sample induction cases here:

1. If τ ≡ b, a base type, c ∈ Db, then

inst
b
ωC(treebI(c)) = inst

b
ωC(〈cbε〉)

= c

2. If τ ≡ (a1 : τ1, . . . , an : τn) and u ∈ [[(a1 : τ1, . . . , an : τn)]]σC , then

instτωC(treeτI(u)) = instτωC(〈πa1tree
τ1
I (u(a1)), . . . , πantreeτnI (u(an))〉)

= (a1 7→ instτ1
ωC(treeτ1I (u(a1))), . . . , an 7→ instτn

ωC(treeτnI (u(an))))
∼τ (a1 7→ u(a1), . . . , an 7→ u(an))
= u

3. If τ ≡ {τ ′} and u ∈ [[{τ ′}]]σC , say u = {u1, . . . , uk}, then

instτωC(treeτI(u)) = instτωC(〈∈ treeτ
′
I (u1), . . . ,∈ treeτ

′
I (uk)〉)

= {instτ
′

ωC(treeτ
′
I (u1), . . . , instτ

′

ωC(treeτ
′
I (un)}

∼τ {u1, . . . , un}
= u



11 A DATA MODEL BASED ON REGULAR TREES 67

Suppose C ∈ C and o ∈ σC . Then treeCI (o) = 〈SCTgttree
τC

I (VC(o))〉.

Hence V ′C(instCωC(treeCI (o))) = instτ
C

ωC (treeτ
C

I (VC(o))).

Hence VC(o) ∼τC V ′C(instCωC(treeCI (o))).

Hence ∼C is a consistent correspondence, and I ≈ I ′.

Lemma 11.3: If ωC ∈ RInst(S) is a regular tree instance, and I = inst′(ωC), then ωC =
tree(inst′(ωC)).

Proof: Suppose I = inst′(ωC). We will show that, for any type τ and ν ∈ TTreeS(τ) such that
ν is valid for ωC , treeτI(oinstO

τ (ν)) = ν.

Consider the relations R defined by

Rτ ≡ {(treeτI(instτωC(ν)), ν)|ν ∈ TTreeS(τ), τ ∈ Types(S), ν valid for ωC}

for any type τ . From the definition of regular trees (section 11.1) it is enough to show that, for
any (ν ′, ν) ∈ R, if i ∈ domν ′ then there is a j ∈ dom(ν) such that ν ′(i) = ν(j) and (ν ′.i, ν.j) ∈ R,
and for any j ∈ dom(ν) there is an i ∈ dom(ν ′) such that ν ′(i) = ν(j) and (ν ′.i, ν.j) ∈ R. Proof
proceeds by induction on types and is similar to the proof of lemma 11.2.

Proposition 11.4: The mappings tree and inst provide an isomorphism between the set of bisim-
ulation classes of object-identity instances, Inst(S)/ ≈, and the set of regular tree instances,
RInst(S).

Proof: Follows immediately from lemmas 11.2 and 11.3.



68 PART II. OBSERVABLE PROPERTIES OF MODELS



69

Part III

The WOL Language for Database
Transformations and Constraints

12 Introduction

In part I we observed that database transformations arise from a wide variety of tasks in database
and information management, and that there is a need for tools and methodologies to aid in
implementing such transformations. In section 4 we argued that such tools need to be based
on data-models supporting complex data-structures and some kind of reference mechanism,
such as object-identities, to allow for the representation of recursive or arbitrarily deeply nested
data-structures.

In part II we examined the issue of the information capacity of data-models involving object-
identities, and claimed that a precise understanding of information capacity was necessary in
order to be able to reason about the correctness or equivalence of database transformations, and
hence the semantics of formalisms for expressing database transformations. We showed that
the information capacity of a data-model is dependent on the constructs available for querying
the data-model, and in particular on the predicates available for comparing object-identities.
We introduced keys as a mechanism for generating or comparing object identities, and argued
that acyclic systems of keys provided an efficient and flexible mechanism for dealing with object
identities.

WOL (Well-founded Object Language) is a declarative language for specifying and implementing
database transformations and constraints. It is based on the data-model of section 7, assuming
acyclic systems of keys as in section 10, and can therefore deal with databases involving object-
identity and recursive data-structures as well as complex and arbitrarily nested data-structures.

WOL bears a superficial resemblence to the F-logic of Kifer and Lausen [28], in that both are
logic-based languages designed for reasoning about database schemas and instances involving
various object-oriented concepts. However F-logic differs from WOL in blurring the distinctions



70 PART III. THE WOL LANGUAGE

between objects and schema-classes, and between objects and attributes, and by directly incor-
porating a notion of inheritence or subsumption. In doing so, F-logic aims to allow reasoning
about normally “second-order” concepts, such as inheritence and methods. In the design of
WOL there is a clear distinction between schemas and instances, and between attributes and
classes, since we felt that these were conceptually distinct, and that coalescing them into a
single concept would be confusing and unworkable. WOL sets itself the less ambitious task of
allowing the specification of and reasoning about instance-level properties of a database, such
as constraints, at the schema level. More significantly, WOL aims to be a practical language
allowing the efficient implementation of a significant class of transformation specifications and
constraints. As far as the author is aware, there are no practical implementations or effiecient
algorithms for constraints, transformations or methods based on F-logic.

In section 5 we argued that there are important interactions between transformations and the
constraints imposed on databases: constraints can play a part in determining a transformation,
and also transformations can imply constraints on their source and target databases. Although
most data-models support some specific kinds of constraints, in general these are rather ad hoc
collections, included because of their utility in the particular examples that the designer of the
system had in mind rather than on any sound theoretical basis. For example, relational databases
will often support keys and sometimes functional and inclusion dependencies [45], while semantic
models might incorporate various kinds of cardinality constraints and inheritance [21, 25]. The
constraints that occur when dealing with transformations often fall outside such predetermined
classes; further it is difficult to anticipate the kinds of constraints that will arise. WOL addresses
this problem by augmenting the data-model with a general formalism for expressing constraints,
which allows one to reason about the interaction between transformations and constraints.

Example 12.1: For example, in our Cities and States database of example 7.1, we would want
to impose a constraint that the capital City of a State is in the State of which it is the capital.
We can express this as

X.state = Y ⇐= Y ∈ StateA, X = Y.capital

This can be read as “if Y is in class State and X is the capital of Y , then Y is the state of
X”. Suppose also that our States and Cities each had an attribute population and we wanted
to impose a constraint that the population of a City was less than the population of the State
in which it resides. We could express this as

X.population < Y.population ⇐= X ∈ CityA, Y = X.state;

Such a constraint cannot be expressed in the constraint languages associated with most data
models.

We can also use constraints to express how the keys of a schema are derived:

X = MkCityA(name = N, state name = S) ⇐=
X ∈ CityA, N = X.name, S = X.state.name.



12 INTRODUCTION 71

This constraint says that the key of an object of class City is a tuple built out of the name of
the city, and the name of its state. Such constraints are important in allowing us to identify
objects in transformations.

WOL is based on Horn clause logic expressions, using a small number of simple predicates
and primitive constructors. However it is sufficient to express a large family of constraints
including those commonly found in established data-models. In fact the only kinds of constraints
which occur in established data-models but can not easily be expressed in WOL are finite
cardinality constraints: these are constraints that might state, for example, that a certain set-
valued attribute has cardinality between 2 and 3, although it wouldn’t be difficult in practice to
extend WOL with operators to express such constraints.

The language WOL can also be used to express constraints that span multiple databases, and,
in particular, can be used to specify transformations. A transformation specification may viewed
as a collection of constraints stating how data in a target database arises from data stored in a
number of source databases. In general however there may be any number of target database
instances satisfying a particular set of constraints for a particular collection of source instances.
It is therefore necessary to restrict our attention to complete transformation specifications, such
that for any collection of source database instances if there is a target instance satisfying the
transformation specification then there is a unique smallest such target instance.

Possibly the closest existing work to WOL are the structural manipulations of Abiteboul and
Hull [1] illustrated in example 3. The rewrite rules in [1] have a similar feel to the Horn
clauses of WOL but are based on pattern matching against complex data-structures, allowing
for arbitrarily nested set, record and variant type constructors. WOL gains some expressivity
over the language of [1] by the inclusion of more general and varied predicates (such as not-
equal and not-in), though we have not included tests for cardinality of sets in WOL. The main
contributions of WOL however lie in its ability to deal with object-identity and hence recursive
data-structures, and in the uniform treatment of transformation rules and constraints.

The language of [1] allows nested rewrite rules which can generate more general types of nested
sets, whereas in WOL we require that any set occurring in an instance is identifiable by some
means external to the elements of the set itself. Comparing the expressive power of the two
formalisms is difficult because of the difference between the underlying models, and because
the expressive power of each language depends on the predicates incorporated in the language.
However if the rewrite rules of [1] are extended to deal with the data-model presented here, and
both languages are adjusted to support equivalent predicates (for example adding inequality
and not-in tests to [1] and cardinality tests to WOL) then WOL can be shown to be at least as
expressive as the rules of [1].

12.1 Implementation of WOL

Formally specifying a database transformation is a worthwhile task in itself, since it increases
our understanding and confidence in the correctness of the transformation. However the WOL



72 PART III. THE WOL LANGUAGE

language also allows us to directly implement an important class of transformation programs.
Since we are concerned with structural transformations which can be performed efficiently on
large quantities of data, rather than general computations, we need to restrict those transfor-
mation specifications that may be used in order to ensure that the transformation procedure
will terminate and can be performed in a single pass of the source database. In section 14
we will define a class of non-recursive transformation programs, and describe an algorithm for
converting such transformation programs written in WOL into a normal form which can then
be translated to an underlying DBPL for implementation.

There are a number of advantages in using the language WOL to program database transforma-
tions and constraints, beyond the ability to formally reason about them: WOL transformation
programs are easy to modify and maintain, for example in order to reflect schema evolutions;
and the declarative nature of WOL means that the conceptually separate parts of a transfor-
mation can be specified independently, and the transformation program formed by collecting
together the relevant clauses.

12.2 A Roadmap to Part III

In section 13 we will define the syntax and semantics of the WOL language. We will present
typing rules for WOL terms and atoms, define notions of well-typing and range-restriction of
WOL clauses, and define a well-formed clause to be one which is both well-typed and range-
restricted. We will also define syntacticly restricted form of WOL clauses called semi-normal
form clauses, which will be used extensively in later sections. Examples will be used to illustrate
various features of WOL, and to show how it can be used to express a wide variety of database
constraints.

In section 14 we will show how WOL can be used for specifying database transformations. First,
in sections 14.1 and 14.2 we will show how WOL can be used to express constraints relating
multiple databases by partitioning database schemas, and how such multi-database constraints
can be used for specifying a database transformation. In section 14.3 we will show that such
collections of transformation clauses may not uniquely and unambiguously determine a mean-
ingful transformation of a source database, and will introduce the notions of deterministic and
complete transformation programs which do uniquely determine transformations. In section 14.4
we will define normal-form transformation clauses, which uniquely determine a complete object
in a target database in terms of source databases only, and which can easily be implemented
in a variety of database programming languages. We also describe restrictions on normal form
clauses, using the notion of characterizing formula, which ensure that they define a complete
transformation program. I have tried to make the notion of characterizing formula described in
section 14.4 as general as possible, with the result that these ideas are rather complicated and
difficult to check. In section 14.5 we present a simplified version of the work on normal-form
clauses and characterizing formula based on a more restrictive scenario. It is suggested that a
reader interested in practical implementations of WOL merely skims the presentation of char-
acterizing formulae presented in section 14.4 and instead concentrates on the simplified versions



13 THE SYNTAX AND SEMANTICS OF WOL 73

in section 14.5. In sections 14.6 and 14.7 we show how non-recursive complete transformation
programs can be unfolded into equivalent normal-form programs, and thus implemented.

In section 15 we show how WOL can be extended in order to specify transformations in a
language supporting alternative collection types such as bags or lists. Section 15 is in some sense
orthogonal to the other sections of this part, and could be skipped without detracting from the
overall understanding of this work.

13 The Syntax and Semantics of WOL

In this section we will give a rigorous definition of the language WOL introduced informally in
previous sections. In section 13.1 we will define the syntax for WOL, and in section 13.2 we will
give a denotational semantics for WOL based on the model of section 7.

13.1 Syntax

We will assume a simply keyed schema, (S,KC), with classes C, and will define our language,
WOLSK, relative to this schema. We will frequently simply write WOL for this language and
leave the schema implicit.

As before we will assume a countable set of constant symbols ranged over by cb for each base
type b ∈ B, and also a countably infinite set of variables, Var, ranged over by X,Y, . . ..

We may also assume some additional predicate symbols, ranged over by pb1...br , . . .. pb1...br

is a predicate symbol of arity r, taking arguments of types b1, . . . , br. In general, when we
use additional predicate symbols, they will represent well established predicates, such as ≤ on
integers, and may make use of infix notations in order to give a more standard appearance.

Terms

Definition 13.1: The set of terms

for (S,K), TermsS , ranged over by P,Q, . . ., is given by the abstract syntax:

P ::= C — class
| cb — constant symbol
| X — variable
| πaP — record projection
| insaP — variant insertion
| !P — dereferencing
| MkCP — object identity referencing



74 PART III. THE WOL LANGUAGE

A term C represents the set of all object identities of class C. A term πaP represents the a
component of the term P , where P should be a term of record type with a as one of its attributes.
insaP represents a term of variant type built out of the term P and the choice a. !P represents
the value associated with the term P , where P is a term representing an object identity. The
term MkCP represents the object identity of class C with key P .

We can also construct a version of the language, WOLS , for an un-keyed schema, S, by missing
out the term constructors MkC , C ∈ C, and skipping the corresponding typing rules and semantic
operators in the following definitions.

We will introduce the shorthand notation P.a, defined by

P.a ≡ πa(!P )

since this construct will occur particularly often. For example, if the variable X is bound to
some object identity, then the term X.name, or πname(!X), represents the name field of the value
associated with X, which must be a suitable record.

Type Contexts and Typing Terms

A type context, Γ, is a partial function (with finite domain) from variables to types:

Γ : Var
∼→ TypesC

Definition 13.2: Given a type context Γ, the relation (Γ `:) ⊆ TermsS ×TypesC is the smallest
relation satisfying the rules:

Γ ` C : {C} Γ ` cb : b

X ∈ dom(Γ)
Γ ` X : Γ(X)

Γ ` P : (a1 : τ1, . . . , ak : τk)
Γ ` πaiP : τi

Γ ` P : τi
Γ ` insaiP : 〈|a1 : τ1, . . . , ak : τk|〉

Γ ` P : C
Γ`!P : τC

Γ ` P : κC

Γ ` MkCP : C

So a type context represents a set of assumptions about the types of the values bound to variables,
namely that a variable X is bound to a value of type Γ(X) if X ∈ dom(Γ). The typing relation
Γ ` P : τ means that if, for each variable X ∈ dom(Γ), X has type Γ(X), then the term P has
type τ .



13 THE SYNTAX AND SEMANTICS OF WOL 75

For example, for the schema from example 7.1, if Γ(X) ≡ City, then Γ `!X : (name : str, state :
State) and Γ ` πname(!X) : str.

Note that, if P is a term and Γ a typing context, there may be multiple types τ such that
Γ ` P : τ .

Atoms

Atomic formulae or atoms are the basic building blocks of formulae in our language. An atom
represents one simple statement about some values.

Definition 13.3: The set of atoms for (S,K), AtomsS , ranged over by φ, ψ, . . . is given by the
abstract syntax:

φ ::= P =̇Q
| P ˙6=Q
| P ∈̇Q
| P ˙6∈Q
| pb1...br(P1, . . . , Pr)
| False

The atoms P =̇Q, P ˙6=Q, P ∈̇Q and P ˙6∈Q represent the obvious comparisons between terms.
pb1...br(P1, . . . , Pr) represents the application of the predicate p to the terms P1, . . . , Pn. False is
an atom which is never satisfied, and is used to represent inconsistent database states.

We mark the symbols =, 6=, ∈ and 6∈ with dots in our syntax in order to distinguish them
from the same symbols used as meta-symbols (with their traditional meanings) elsewhere in the
paper. However, where no ambiguity is likely to arise, we may omit these dots.

Definition 13.4: An atom φ is said to be well-typed by a type context Γ iff

1. φ ≡ P =̇Q or φ ≡ P ˙6=Q and Γ ` P : τ , Γ ` Q : τ for some τ ; or

2. φ ≡ P ∈̇Q or φ ≡ P ˙6∈Q and Γ ` P : τ , Γ ` Q : {τ} for some τ ; or

3. φ ≡ pb1...br(P1, . . . , Pr) and Γ ` Pi : bi for i = 1, . . . , r; or

4. φ ≡ False.

Intuitively an atom is well-typed iff that atom makes sense with respect to the types of the
terms occurring in the atom. For example, for an atom P = Q, it wouldn’t make sense to reason
about the terms P and Q being equal unless they were potentially of the same type.



76 PART III. THE WOL LANGUAGE

Term Occurrences and Range Restriction

The concept of range-restriction is used to ensure that every term in a collection of atoms is
bound to some value occurring in a database instance. This is a necessary requirement if we
wish to infer types for the terms, and also to ensure that the truth of a statement of our logic
is dependent only on the instance and not the underlying domains of the various types.

In order to define range-restriction we must first introduce the concept of term occurrences.
There can be several distinct occurrences of a particular term, P , in a set of atoms, and it is
necessary to ensure that each individual occurrence of a term is independently range-restricted.
Formally a term occurrence can be identified by the atom in which it occurs and a path within
the parse tree of that atom. We will develop such a formal notion of term-occurrence and use it
in our definition of range restriction in this sub-section, though later we will return to relying
on an intuitive notion of occurrences of terms.

Suppose that P is a term. We define the partial function occ(P ) : IN ∼→ TermsS by

1. If P ≡ cb, cb a constant symbol, or P ≡ C, C ∈ C, or P ≡ X, X ∈ Var, then dom(occ(P )) =
{0} and occ(P )(0) ≡ P .

2. If P ≡ πaQ or P ≡ insaQ or P ≡!Q or P ≡ MkCQ, then

dom(occ(P )) = {0} ∪ {i+ 1|i ∈ dom(occ(Q))}

and

occ(P )(i) ≡
{
P if i = 0
occ(Q)(i− 1) otherwise

If φ is an atom then we define the partial function occ(φ) : IN× IN ∼→ TermsS by

1. If φ ≡ (P1=̇P2) or φ ≡ (P1
˙6=P2) or φ ≡ (P1∈̇P2) or φ ≡ (P1

˙6∈P2), then

dom(occ(φ)) = {(1, i)|i ∈ dom(occ(P1))} ∪ {(2, j)|j ∈ dom(occ(P2))}

and
occ(φ)(i, j) ≡ occ(Pi)(j)

2. If φ ≡ pb1...br(P1, . . . , Pr) then

dom(occ(φ)) = {(i, j)|i ∈ 1, . . . , r, j ∈ dom(occ(Pi))}

and
occ(φ)(i, j) ≡ occ(Pi)(j)

3. If φ ≡ False then dom(occ(φ)) = ∅.



13 THE SYNTAX AND SEMANTICS OF WOL 77

Hence the map occ(φ) lets us identify and access any particular occurrence of a term in the
atom φ. The pairs of integers may be thought of as representing a path in the parse tree of φ.

Definition 13.5: Suppose Φ is a set of atoms and P a term. An occurrence of P in Φ consists
of an atom φ ∈ Φ and a pair (i, j) ∈ IN× IN such that (i, j) ∈ dom(occ(φ)) and occ(φ)(i, j) = P .

We write Occ(Φ) for the set of all term occurrences in Φ.

Note that there may be several occurrences of the same term in a particular set of atoms. For
example, if we take

Φ ≡ {X∈̇C, !X=̇insaY, Z=̇insaY }

then there are two occurrences of the term X, namely ((X∈̇C), (1, 0)) and ((!X=̇insaY ), (1, 1)),
and there are two occurrences of the term insaY , namely ((!X=̇insaY ), (2, 0)) and ((Z=̇insaY ),
(2, 0)).

Definition 13.6: Suppose Φ is a set of atoms, and (φ, (i, j)) is an occurrence of a term P in Φ.
Then (φ, (i, j)) is said to be range-restricted in Φ iff one of the following holds:

1. P ≡ C where C ∈ C is a class;

2. P ≡ cb where cb is a constant symbol;

3. P ≡ πaQ where (φ, (i, j + 1)) is a range restricted occurrence of the term Q in Φ;

4. (φ, (i, j − 1)) is a range-restricted occurrence of a term Q ≡ insaP in Φ;

5. P ≡!Q where (φ, (i, j + 1)) is a range-restricted occurrence of the term Q in Φ;

6. (φ, (i, j)) = (P =̇Q, (1, 0)) or (φ, (i, j)) = (P ∈̇Q, (1, 0)) and (φ, (2, 0)) is a range restricted
occurrence of Q in Φ, or (φ, (i, j)) = (Q=̇P, (2, 0)) and (φ, (1, 0)) is a range-restricted
occurrence of Q in Φ.

7. P ≡ X, a variable, and there is a range-restricted occurrence of X in Φ.

Note: The distinction here, between syntactic terms and occurrences of those terms in a set of
atoms, is important: it is possible for a syntactic term to occur two or more times in a set of
atoms, but for only one occurrence of that term to be range-restricted.

For example consider the set of atoms

Φ ≡ {X∈̇C, !X=̇insaY, Z=̇insaY }

Here the first occurrence of the term insaY is range-restricted, while the second occurrence of
insaY and the term Z are not.



78 PART III. THE WOL LANGUAGE

Clauses

Definition 13.7: A clause consists of two finite sets of atoms: the head and the body of the
clause. Suppose Φ = {φ1, . . . , φk} and Ψ = {ψ1, . . . , ψl}. We write

ψ1, . . . , ψl ⇐= φ1, . . . , φk

or
Ψ ⇐= Φ

for the clause with head Ψ and body Φ. Intuitively the meaning of a clause is that if the
conjunction of the atoms in the body holds then the conjunction of the atoms in the head also
holds.

For example, the clause

Y.state = X ⇐= X ∈ State, Y = X.capital

means that, for every object identity X in the class State, if Y is the capital of X then X is the
state of Y .

Well-Formed Clauses

Definition 13.8: A set of atoms Φ is said to be well-typed if there is a type context Γ such that
each atom in Φ is well-typed by Γ.

A set of atoms Φ is said to be well-formed iff it is well typed, and every term occurrence in Φ
is range-restricted in Φ.

A clause Ψ ⇐= Φ is said to be well-formed iff Φ is well-formed and Φ ∪Ψ is well-formed.

Intuitively a well-formed clause is one that makes sense, in that all the terms of the clause refer
to values in the database, and the types of the terms are compatible with the various predicates
being applied to them. In fact we will only be interested in clauses which are well-formed.

Proposition 13.1: If Φ is a well-formed set of atoms then there is a unique type context Γ such
that dom(Γ) = Var(Φ) and every atom in Φ is well-typed by Γ.

Before proving this proposition we need to define a typing relation on term occurrences. Given
a set of atoms Φ, we define the relation (Φ `:) ⊆ Occ(Φ)×TypesS between term occurrences in
Φ and types to be the smallest relation such that

1. If w is an occurrence of a term P ≡ C in Φ, C ∈ C, then Φ ` w : {C};

2. If w is an occurrence of a term P ≡ cb in Φ, then Φ ` w : b;

3. If w = (φ, (i, j)) is an occurrence of a term P ≡ πaiQ, where Φ ` (φ, (i, j + 1)) : (a1 :
τ1, . . . , ak : τk) then Φ ` w : τi;



13 THE SYNTAX AND SEMANTICS OF WOL 79

4. If w = (φ, (i, j + 1)), where w′ = (φ, (i, j)) is an occurrence of a term Q ≡ insaiP , and
Φ ` w′ : 〈|a1 : τ1, . . . , ak : τk|〉, then Φ ` w : τi;

5. If w = (φ, (i, j)) is an occurrence of a term P ≡!Q, where Φ ` (φ, (i, j + 1)) : C then
Φ ` w : τC ;

6. If w = (φ, (1, 0)) where φ is of the form P ∈̇Q, and Φ ` (φ, (2, 0)) : {τ} then Φ ` w : τ ;

7. If w = (φ, (i, 0)) where φ is of the form P =̇Q, and i = 1 and Φ ` (φ, (2, 0)) : τ , or i = 2
and Φ ` (φ, (1, 0)) : τ , then Φ ` w : τ ;

8. If w is an occurrence of a term X, X a variable, and there is a occurrence w′ of X such
that Φ ` w′ : τ , then Φ ` w : τ .

We can now proceed with the proof of proposition 13.1.

Proof: We will prove that, if Φ is a well-formed set of atoms, which is well-typed by Γ and w
is an occurrence of a term P in Φ, then there is a unique type τ such that Φ ` w : τ , and that
if Φ ` w : τ then Γ ` P : τ .

The proof will be by induction on the proof that Φ ` w : τ . Note we only need to be concerned
about uniqueness of types of an occurrence w of a term P if P has the form insaQ, since otherwise
there is at most one type τ such that Γ ` P : τ . We will give some sample cases of the induction:

If w is an occurrence of a term P ≡ C, C ∈ C, then Φ ` w : {C}, and Γ ` C : {C} as required.

If w = (φ, (i, j)) is an occurrence of P = πaiQ, and Φ ` (φ, (i, j + 1)) : (a1 : τ1, . . . , ak : τk).
Then, by our induction hypothesis, Γ ` Q : (a1 : τ1, . . . , ak : τk), and so Γ ` πaiQ : τi.

Suppose w = (φ, (1, 0)) where φ ≡ (P =̇Q), and Φ ` (φ, (2, 0)) : τ independently. So Q is not
of the form insaQ

′. Then, by our induction hypothesis, Γ ` Q : τ and there is no other type
τ ′ for which Γ ` Q : τ ′. Hence, since φ is well typed, we have Γ ` P : τ . Suppose P has the
form insaR. Then we observe that the only possible way to derive Φ ` w : τ ′ for some τ ′ is if
Φ ` (φ, (2, 0)) : τ ′, and that in this case τ ′ = τ by our induction hypothesis.

The other induction cases are similar.

It follows from this induction that for each variable X ∈ Var(Φ), there is a unique τ such that
Φ ` w : τ for every occurrence w of X. Hence for any type context Γ such that Γ well-types Φ,
we must have Γ(X) = τ . Hence result.

Corollary 13.2: If Ψ ⇐= Φ is a well-formed clause then there is a unique type context Γ such
that dom(Γ) = Var(Φ ∪Ψ) and Ψ ⇐= Φ is well-typed by Γ.

Though not difficult, this result is significant in that it means we can assign a unique type to
every term occurring in a well-formed clause.

If Φ is a well-formed set of atoms and P is a term occurring in Φ, we write Φ ` P : τ to mean
Φ ` w : τ where w is some occurrence of P in Φ.



80 PART III. THE WOL LANGUAGE

Example 13.1: Let us first add some additional attributes to our running example. Consider
the schema S with classes

C ≡ {City,State}

and

S(City) ≡ (name : str, state : State, popl : int)
S(State) ≡ (name : str, capital : City, popl : int, neighbors : {State})

So both Cities and States have attributes representing their population, and States also have an
attribute representing their neighboring States.

Our model itself already ensures the fundamental referential integrity constraints: that the state
of each City is in the States extent, that the capital of each State is in the City extent, and
that the neighbors of each State are in the States extent. However we would also like to assert
additional constraints such as that the capital City of a State is in that State. This could be
represented by the clause:

Y.state = X ⇐= X ∈ State, Y = X.capital

Equally we would like constraints ensuring that no State is its own neighbor, and each state is
a neighbor of its neighbors:

Y 6∈ Y.neighbors ⇐= Y ∈ State
Y ∈ Z.neighbors ⇐= Y ∈ State, Z ∈ Y.neighbors

Finally we might like to make some restrictions on the values that some other attributes may
take, for example that the population of any city is smaller than the population of its state:

X.popl ≤ X.state.popl ⇐= X ∈ City

Here we’re using an additional predicate, ≤, on integers, representing the normal ordering on
integers.

13.2 Semantics

In this section we will define a semantics for WOLSK in terms of the model defined in 7.3.

Semantics of Terms

Suppose I = (σC ,VC) is an instance of (S,K). An I-environment, ρ, is a partial function from
Var to D(σC). We write Env(I) for the set of all I-environments.

For each constant symbol cb we assume an interpretation c ∈ Db.



13 THE SYNTAX AND SEMANTICS OF WOL 81

Definition 13.9: We define the semantic operator [[·]]I : TermsS → Env(I) → D(σC) by:

[[C]]Iρ ≡ σC — C ∈ C
[[cb]]Iρ ≡ c — cb a constant symbol

[[πaP ]]Iρ ≡


([[P ]]Iρ)a if [[P ]]Iρ ∈ (A ∼→ D(I))

and a ∈ dom([[P ]]Iρ)
undefined otherwise

[[insaP ]]Iρ ≡ (a, [[P ]]Iρ)

[[!P ]]Iρ ≡
{
VC([[P ]]Iρ) if [[P ]]Iρ ∈ σC for some C ∈ C
undefined otherwise

[[MkC(P )]]Iρ ≡


o if [[P ]]Iρ ∈ [[κC ]]I and o ∈ σC

such that KC(o) = [[P ]]Iρ
undefined otherwise

[[X]]Iρ ≡
{
ρ(X) if X ∈ dom(ρ)
undefined otherwise

For example, for the key specification of example 10.1 and instance of example 7.2,

[[MkState(“Pennsylvania”)]]I() = PA

and
[[πcapital(!X)]]I(X 7→ PA) = Harris

An I-environment, ρ, is said to satisfy a type context, Γ, iff dom(ρ) = dom(Γ) and ρ(X) ∈
[[Γ(X)]]I for each X ∈ dom(ρ).

Proposition 13.3: If Γ ` P : τ and ρ satisfies Γ then [[P ]]Iρ is defined and [[P ]]Iρ ∈ [[τ ]]I.

Semantics of Atoms

For each auxiliary predicate pb1...br we assume a relation p ⊆ Db1 × . . .×Dbr .

Definition 13.10: We define the semantic operator [[·]]I : AtomsS → Env(I) → {T,F} by:

[[P =̇Q]]Iρ ≡


T if [[P ]]Iρ and [[Q]]Iρ are defined

and [[P ]]Iρ = [[Q]]Iρ
F otherwise

[[P ˙6=Q]]Iρ ≡


T if [[P ]]Iρ and [[Q]]Iρ are defined

and [[P ]]Iρ 6= [[Q]]Iρ
F otherwise



82 PART III. THE WOL LANGUAGE

[[P ∈̇Q]]Iρ ≡


T if [[P ]]Iρ and [[Q]]Iρ are defined

and [[P ]]Iρ ∈ [[Q]]Iρ
F otherwise

[[P ˙6∈Q]]Iρ ≡


T if [[P ]]Iρ and [[Q]]Iρ are defined

and [[P ]]Iρ 6∈ [[Q]]Iρ
F otherwise

[[p(P1, . . . , Pr)]]Iρ ≡
{

T if ([[P1]]Iρ, . . . , [[Pr]]Iρ) ∈ p
F otherwise

[[False]]Iρ ≡ F

If Φ is a set of atoms, we define [[Φ]]Iρ by

[[Φ]]Iρ ≡
{

T if [[φ]]Iρ = T for each φ ∈ Φ
F otherwise

Semantics of Clauses

In a clause, any variables occurring in the body of the clause are taken to be universally quan-
tified, while any additional variables occurring in the head are existentially quantified. Hence a
clause is satisfied if, for any instantiation of the variables in the body of the clause such that all
the atoms in the body are true, there is an instantiation of the remaining variables in the head
of the clause such that all the atoms in the head are also true.

Definition 13.11: Suppose ∆ ≡ (ψ1, . . . , ψl ⇐= φ1 . . . φk) is a well-formed clause. An instance I
is said to satisfy ∆ iff, for any environment ρ with dom(ρ) = Var(φ1, . . . , φk), if

[[φi]]Iρ = T

for i = 1, . . . , k, then there is an extension of ρ, ρ′, with dom(ρ′) = Var(φ1, . . . , φk, ψ1, . . . , ψl),
such that

[[ψj ]]Iρ′ = T

for i = 1, . . . , l.

Two clauses, ∆ and ∆′, are said to be equivalent iff for any instance I, I satisfies ∆ iff I
satisfies ∆′.

Example 13.2: For the instance of example 7.2, suppose the environment ρ is given by

ρ ≡ (X 7→ PA, Y 7→ Phila)



13 THE SYNTAX AND SEMANTICS OF WOL 83

then

[[X ∈ State]]Iρ = T

[[Y = X.capital]]Iρ = T

[[Y.state = X]]Iρ = T

If we check other suitably typed environments, we fine that any environment in which the first
two atoms are true also makes the third atom true. So this instance satisfies the clause

Y.state = X ⇐= X ∈ State, Y = X.capital

If Pr is a set of clauses and ∆ is a clause, we write Pr |= ∆ to mean that, for any instance I,
if I satisfies each clause in Pr then I also satisfies ∆.

13.3 Semi-Normal Forms

The language WOL is very rich in that it allows us many different ways of expressing the same
thing. However when performing structural manipulations of the clauses, as we will do when
dealing with implementing transformations later, our life is made easier if there is less variance
in the way things can be expressed, so that techniques such as unification can be applied simply.

In this section we will define a semi-normal form (snf) for clauses which reduces the variety of
forms the atoms of a clause can take. For every clause we will show that there is an equivalent
clause in semi-normal form.

There are two main purposes in converting a clause to semi-normal form: firstly, because any two
equivalent sets of atoms in snf differ only in their choices of variables, we can apply unification
algorithms to atoms and clauses in snf. Secondly, converting a clause to snf ensures that there is
a variable introduced at every point where the database is being referenced by the clause. This
makes it easy to reason about the information being accessed or implied by a particular clause,
which will be necessary in our analysis of recursion. In addition, assuming that clauses are in
snf allows us to reduce the number of cases we must consider, and consequently simplifies many
of our proofs.



84 PART III. THE WOL LANGUAGE

Definition 13.12: An atom is said to be in semi-normal form iff it is of one of the forms:

X=̇cb

X=̇C
X=̇πaY
X=̇insaY
X=̇ !Y

X=̇MkC(Y )
X=̇Y
X ˙6=Y
X∈̇Y
X ˙6∈Y

pb1...br(X1, . . . , Xr)
False

where X and Y are variables, cb a constant symbol, C ∈ C a class, and a ∈ A an attribute label.

Note, in particular, that the terms of a snf atom will contain no nested operators, and a snf
atom using some predicate other than =̇ will contain only variables as terms.

Lemma 13.4: For any set of atoms, Φ, there is a set of atoms in snf, Φ′, with Var(Φ) ⊆ Var(Φ′),
such that for any instance I and I-environment ρ with dom(ρ) = Var(Φ), [[Φ]]Iρ = T if and
only if there is an extension ρ′ of ρ such that [[Φ′]]Iρ′ = T.

Intuitively this means that for any set of atoms there is an equivalent set of atoms in semi-normal
form, subject to the introduction of additional variables. In general we expect a single atom to
be equivalent to a set of snf atoms.

Proof: If is sufficient to show that for any atom φ there is a set of semi-normal form atoms Φ
such that, for any environment ρ with dom(ρ) = Var(φ), [[φ]]Iρ = T iff there is an extension ρ′

of ρ with [[Φ]]Iρ′ = T.

Assume that we have an infinite supply of unused variables. For any term P and new variable
W , we define the set of atoms snf(P,W ) by

1. If P ≡ C, C ∈ C, then snf(P,W ) ≡ {W =̇C}

2. If P ≡ cb, cb a constant symbol, then snf(P,W ) ≡ {W =̇cb}

3. If P ≡ X, X a variable, then snf(P,W ) ≡ {W =̇X}

4. If P ≡ πaQ then snf(P,W ) ≡ {W =̇πaV } ∪ snf(Q,V ) where V is a new variable.

5. If P ≡ insaQ then snf(P,W ) ≡ {W =̇insaV } ∪ snf(Q,V ) where V is a new variable.

6. If P ≡!Q then snf(P,W ) ≡ {W =̇!V } ∪ snf(Q,V ) where V is a new variable.



13 THE SYNTAX AND SEMANTICS OF WOL 85

7. If P ≡ MkCQ then snf(P,W ) ≡ {W =̇MkCV } ∪ snf(Q,V ) where V is a new variable.

Then, for any environment ρ such that dom(ρ) = Var(P ) and [[P ]]Iρ is defined, there is an
extension ρ′ of ρ such that [[snf(P,W )]]Iρ = T, and if ρ′′ is an extension of ρ such that
[[snf(P,W )]]Iρ = T then ρ′(W ) = [[P ]]Iρ.

For any atom, φ we define the atoms snf(φ) by

1. If φ ≡ (P =̇Q) then snf(φ) ≡ {V =̇W} ∪ snf(P, V ) ∪ snf(Q,W ) where V and W are new
variables.

2. If φ ≡ (P ˙6=Q) then snf(φ) ≡ {V ˙6=W} ∪ snf(P, V ) ∪ snf(Q,W ) where V and W are new
variables.

3. If φ ≡ (P ∈̇Q) then snf(φ) ≡ {V ∈̇W} ∪ snf(P, V ) ∪ snf(Q,W ) where V and W are new
variables.

4. If φ ≡ (P ˙6∈Q) then snf(φ) ≡ {V ˙6∈W} ∪ snf(P, V ) ∪ snf(Q,W ) where V and W are new
variables.

5. If φ ≡ (pb1...br(P1, . . . , Pr)) then snf(φ) ≡ {pb1...br(W1, . . . ,Wr)} ∪ snf(P1,W1) ∪ . . . ∪
snf(Pr,Wr) where W1, . . . ,Wr are new variables.

6. If φ = False then snf(φ) = {False}.

Then, for any ρ with dom(ρ) = Var(φ), we have [[φ]]Iρ = T iff there is an extension ρ′ of ρ such
that [[snf(φ)]]Iρ′ = T.

Example 13.3: The atom X=̇Y.state.capital is equivalent to the snf atoms

{X=̇πcapital(U), U=̇!V, V =̇πstate(W ), mW =̇!Y }

Definition 13.13: A clause, Ψ ⇐= Φ, is in semi-normal form iff

1. all its atoms are in semi-normal form;

2. Φ contains no atoms of the form X=̇Y ;

3. for any atoms of the form X=̇Y in Ψ, X ∈ var(Φ) and Y ∈ var(Φ);

4. if X,Y, Z ∈ var(Φ ∪Ψ) and Φ ∪Ψ contains the atoms Y =̇πaX and Z=̇πaX then Y ≡ Z;
and if Φ ∪ Ψ ` X : (a1 : τ1, . . . , an : τn), Φ ∪ Ψ ` X : (a1 : τ1, . . . , an : τn) and Φ ∪ Ψ
contains atoms Z1=̇πa1X, . . . , Zn=̇πanX and Z1=̇πa1Y, . . . , Zn=̇πanY then X ≡ Y ;

5. if X,Y, Z ∈ var(Φ ∪Ψ) and Φ ∪Ψ contains the atoms X=̇insaY and X=̇insbZ then a ≡ b
and Y ≡ Z; and if Φ ∪ Ψ contains the atoms X=̇insaiZ and Y =̇insaiZ and Φ ∪ Ψ ` X :
〈|a1 : τ1, . . . , an : τn|〉, Φ ∪Ψ ` X : 〈|a1 : τ1, . . . , an : τn|〉 then X ≡ Y ;



86 PART III. THE WOL LANGUAGE

6. if X,Y, Z ∈ var(Φ ∪Ψ) and Φ ∪Ψ contains the atoms X=̇!Z and Y =̇!Z then X ≡ Y ;

7. if X,Y, Z ∈ var(Φ ∪ Ψ) and Φ ∪ Ψ contains the atoms X=̇MkCZ and Y =̇MkCZ then
X ≡ Y ; and if Φ ∪Ψ contains the atoms X=̇MkCY and X=̇MkCZ then Y ≡ Z;

8. if X,Y ∈ var(Φ ∪Ψ) and Φ ∪Ψ contains the atoms X=̇cb and Y =̇cb then X ≡ Y ; and if
Φ ∪Ψ contains the atoms X=̇cb and X=̇db then cb ≡ db;

9. if Φ ∪Ψ contains an atom X ˙6=Y then X 6≡ Y ;

10. for any X,Y ∈ var(Φ∪Ψ), Φ∪Ψ does not contain both of the atoms X∈̇Y and X ˙6∈Y ; and

11. If Φ contains the atom False then Φ = {False} and Ψ = {False}, and if Ψ contains the
atom False then Ψ = {False}.

So intuitively a clause, Ψ ⇐= Φ, is in semi-normal form if

1. all its atoms are in semi-normal form;

2. given 1, it contains a minimal number of variables: in particular there are no distinct
variables, X,Y ∈ var(Φ), such that Φ |= X=̇Y , and there are no distinct variables X,Y ∈
var(Φ ∪Ψ) such that either X or Y is in var(Ψ) \ var(Φ) and Φ ∪Ψ |= X=̇Y ; and

3. it contains no contradictory atoms other than the atom False which may only occur by
itself in the head of the clause.

The following proposition, though straightforward, is perhaps the most significant result in
making semi-normal form clauses useful.

Proposition 13.5: For any clause ∆, there is an equivalent clause ∆′, unique up to the choice of
variables, such that ∆′ is in snf.

Proof: Suppose we have a clause Ψ ⇐= Φ. We will construct a semi-normal form clause
Ψ′ ⇐= Φ′ from Ψ ⇐= Φ in stages, showing that the clause constructed at each stage is equivalent
to the clause of the stage before.

1. Let Φ1 and Ψ1 be sets of snf atoms which are equivalent to Φ and Ψ respectively, as
constructed in lemma 13.4.

2. If φ is an atom of the form X=̇Y in Φ1, X 6≡ Y , then replace Φ1 with Φ1[X/Y ] and Ψ1 with
Ψ1[X/Y ], where Ψ[X/Y ] denotes the set of atoms formed by replacing every occurrence
of Y by X in Φ. Repeat this process until there are no more atoms of the form X=̇Y ,
X 6≡ Y , left in Φ1. Remove any atoms of the form X=̇X from Φ1 and Ψ1, and call the
resulting sets of atoms Φ2 and Ψ2.



13 THE SYNTAX AND SEMANTICS OF WOL 87

3. If φ is an atom of the form X=̇Y in Ψ2, where X 6≡ Y and X 6∈ Var(Φ2) or Y 6∈ Var(Φ2),
then replace Φ2 and Ψ2 with Φ2[X/Y ] and Ψ2[X/Y ] respectively. Repeat this process
until there are no remaining atoms of this form in Ψ2. Remove any atoms of the form
X=̇X in Ψ2, and call the resulting sets of atoms Ψ3 and Φ3.

4. If Φ3 ∪Ψ3 contains atoms of one of the forms

(a) X=̇πaZ and Y =̇πaZ, where X 6≡ Y

(b) Zi=̇πaiX and Zi=̇πaiY , for i = 1, . . . , k, where Φ3 ∪ Ψ3 ` X : (a1 : τ1, . . . , ak : τk)
where Φ3 ∪Ψ3 ` X : (a1 : τ1, . . . , ak : τk) for some types τ1, . . . , τk

(c) Z=̇insaX and Z=̇insaY , where X 6≡ Y

(d) X=̇insaZ and Y =̇insaZ, where X 6≡ Y and Φ3 ∪Ψ3 ` X : τ and Φ3 ∪Ψ3 ` Y : τ for
some type τ

(e) X=̇!Z and Y =̇!Z, where X 6≡ Y

(f) X=̇MkCZ and Y =̇MkCZ, where X 6≡ Y

(g) Z=̇MkCX and Z=̇MkCY , where X 6≡ Y

(h) X=̇cb and Y =̇cb, where X 6≡ Y

then replace Φ3 and Ψ3 by Φ3[X/Y ] and Ψ3[X/Y ] respectively. Repeat this process until
no more sets of atoms of one the above forms are present in Ψ3 ∪ Φ3. Call the resulting
sets of atoms Ψ4 and Φ4.

5. If Φ4 contains atoms of one of the forms

(a) X ˙6=X
(b) Z=̇insaX and Z=̇insbX where a 6≡ b

(c) Z=̇cb and Z=̇db where cb 6≡ db

(d) X∈̇Y and X ˙6∈Y
(e) False

then let Φ5 = {False} and Ψ5 = {False}. Otherwise, if Φ4 ∪ Ψ4 contains atoms of one of
the above forms, then let Φ5 = Φ4 and let Ψ5 = {False}. Otherwise let Φ5 = Φ4 and let
Ψ5.

It remains to show that the clause Ψ ⇐= Φ is equivalent to Ψi ⇐= Φi for i = 1, 2, 3, 4, 5. It is
easy to see that Ψi+1 ⇐= Φi+1 is equivalent to Ψi ⇐= Φi for i = 1, 2, 3, 4. We will show that
Ψ ⇐= Φ is equivalent to Ψ1 ⇐= Φ1.

Suppose I is an instance satisfying Ψ ⇐= Φ, and ρ′ is an environment such that [[Φ1]]Iρ′ = T.
Then by lemma 13.4, if ρ is the restriction of ρ′ to Var(Φ) then [[Φ]]Iρ = T. Hence there is an
extension of ρ to Var(Ψ∪Φ), say ρ′′, such that [[Ψ]]Iρ′′ = T. Hence, by lemma 13.4, there is an
extension of ρ′′ to Var(Ψ1 ∪ Φ), say ρ′′′, such that [[Ψ1]]Iρ′′′ = T. Hence if we take ρ∗ to be the
union of ρ′ and ρ′′′, then ρ∗ is an extension of ρ′, and [[Ψ1]]Iρ∗ = T.



88 PART III. THE WOL LANGUAGE

Similarly we can show that any I satisfying Ψ1 ⇐= Φ1 also satisfies Ψ ⇐= Φ. Hence result.

Example 13.4: Consider again the clause

Y.state = X ⇐= X ∈ State, Y = X.capital

Recall that this is shorthand notation for

πstate(!Y ) = X ⇐= X ∈ State, Y = πcapital(!X)

This is equivalent to the snf clause

V =!Y,X = πstate(V ) ⇐= W = State, X ∈W,U =!X,Y = πcapital(U)

Note that, for every subterm in the original clause, there is a corresponding variable in the snf
clause.

14 Database Transformations

In this section we will show how our language, WOL, can be used to specify and implement gen-
eral structural transformations on databases. Transformations are specified at the schema-level,
describing the relationship between instances of two or more schemas. We consider transfor-
mations to be specified by a series of logical statements in WOL, describing the relationships
between two databases, just as we consider constraints to be logical statements about a sin-
gle database. However, since we are concerned with structural transformations which can be
performed efficiently on large quantities of data, rather than general computations, we will
need to restrict those sets of logical statements that may be used in order to ensure that the
transformation procedure will terminate and can be performed in a single pass.

The language as presented so far deals with a single database schema and instance. However in
order to express transformations, or other correspondences between two or more databases, it
is necessary to extend the language to deal with multiple distinct database values. In general
we will distinguish one of these databases, which we will call the target database, and we will
refer to the other databases as the source databases, though this distinction will become more
meaningful when we start considering the actual implementation of database transformations.

14.1 Partitioning Schemas and Instances

We say schemas S1 and S2 are disjoint iff their sets of classes C1 and C2 are disjoint. Suppose
S1, . . . ,Sn are pairwise disjoint schemas with sets of classes, C1, . . . , Cn. We define their union,
S ≡ S1 ∪ . . . ∪ Sn, to be the schema with classes C ≡ C1 ∪ . . . ∪ Cn and

S(C) ≡ Si(C)



14 DATABASE TRANSFORMATIONS 89

if C ∈ Ci.

Definition 14.1: A partition of a schema S is a collection of disjoint schemas S1, . . . ,Sn such
that S = S1 ∪ . . . ∪ Sn.

If I1, . . . , In are instances of S1, . . . ,Sn respectively, where Ii ≡ (σCi
i ,V

Ci
i ), then I ≡ I1∪ . . .∪In

is given by I ≡ (σC ,VC), where C = C1 ∪ . . . ∪ Cn, σC ≡ σCi and VC ≡ VCi , for C ∈ Ci.

Clearly I1 ∪ . . . ∪ In is an instance of S1 ∪ . . . ∪ Sn. Further, for any instance I of S1 ∪ . . . ∪ Sn
there exist unique instances I1, . . . , In of S1, . . . ,Sn respectively such that I = I1 ∪ . . . ∪ In.
Given a partition S1, . . . ,Sn of a schema S, and an instance I of S, we write I/Si, i = 1, . . . , n,
for the unique instances of Si such that I = I/S1 ∪ . . . ∪ I/Sn.

If (S1,K1), . . . , (Sn,Kn) are disjoint keyed schemas then we define their union, (S,K) ≡ (S1,K1)∪
. . . ∪ (Sn,Kn), to be such that S ≡ S1 ∪ . . . ∪ Sn and κC ≡ κCi if C ∈ Ci, and KCI ≡ KCi I/Si

if
C ∈ Ci.

In looking at transformations, we will concentrate on dealing with transformations between
two databases. We will assume that we have a simply-keyed schema (S,K) with a partition
(SSrc,KSrc), (STgt,KTgt), and will use the language WOLSK in order to specify transformations
from the source schema (SSrc,KSrc) to the target schema, (STgt,KTgt) (though the results can
be adapted to non-keyed schemas). The source schema SSrc may in turn be partitioned into a
number of distinct schemas, so that these methods apply equally well to transforming a single
database or a collection of databases.

14.2 Transformation Clauses and Programs

In analyzing the clauses that describe a transformation, it is necessary to classify the terms of
a clause as source terms, which refer to part of the source database, and target terms, which
refer to the target database. Certain terms may be considered to be both source terms and
target terms: indeed this is necessary in order for a clause to express the transformation of data
between two databases.

Suppose (S,K) is a schema, partitioned into two schemas (SSrc,KSrc) and (STgt,KTgt) as de-
scribed earlier, and Φ is a set of WOLSK atoms. A term P occurring in Φ is said to be a target
term in Φ iff

1. P ≡ C where C ∈ CTgt, or

2. P ≡ πaQ where Q is a target term in Φ, or

3. P occurs in a term Q ≡ insaP where Q is a target term in Φ, or

4. P ≡!Q where Q is a target term in Φ, or

5. P occurs in a term Q ≡ MkCP where Q is a target term in Φ, or

6. Φ contains an atom P =̇Q, Q=̇P or P ∈̇Q where Q is a target term in Φ.



90 PART III. THE WOL LANGUAGE

The definition of source terms is similar.

Definition 14.2: There are three kinds of WOL clauses that are relevant in determining trans-
formations:

1. target constraints — containing no source terms;

2. source constraints — containing no target terms; and

3. transformation clauses — clauses for which the translation into semi-normal form,
Ψ ⇐= Φ satisfies

(a) each term in Ψ is a target term;

(b) Φ ∪ Ψ contains no negative target atoms: that is, no atoms of the form P 6∈ Q or
P 6= Q where P or Q are target terms;

(c) for any variable X ∈ var(Φ ∪Ψ), such that X is a target term of set type in Φ ∪Ψ,
(that is Φ ∪ Ψ ` X : {τ} for some τ), then there is at most one atom of the form
X=̇P in Φ ∪Ψ; and

(d) for every atom ψ ∈ Ψ \Φ there is a variable X occurring in ψ such that X 6∈ Var(Φ).

So a transformation clause is one that does not imply any constraints on the source database,
and which only implies the existence of certain objects or values in the target database.

Further a transformation clause is limited to using “non-negative” tests on the target database,
and cannot test for equality of target values of set type. This is because we need to be able to
apply transformation clauses at points where the target database is only partially instantiated,
and therefore the tests must remain true even if additional elements are added to the target
database. For example, suppose we were to allow a transformation clause such as

1 ∈ X.a⇐= X ∈ C, Y ∈ C, X.a = Y.a

where C is a class with corresponding type τC ≡ (a : {int}). Then suppose, at some point
during the transformation, we were to find an instantiation of X and Y to two objects, say o1
and o2, of class C, such that the body of the clause was true at that point in the transformation.
Then the clause would cause the constant 1 to be added to the set X.a, thus potentially making
the body of the clause no longer true.

Note that it is possible in this characterization for a clause to be both a transformation clause
and a target constraint. This reflects the fact that a target constraint can perform two functions:
determining the data which must be inserted into a target database, and ensuring the integrity
of data being inserted into a database.

Source constraints do not play a part in populating a target database, and, since we will assume
that the contents of the source database are already know before we evaluate a transformation,



14 DATABASE TRANSFORMATIONS 91

they do not play a direct part in determining a transformation. However they play a significant
role in simplifying transformation clauses (see section 17).

Example 14.1: For the schemas of the Cities and Countries databases described earlier, suppose
we split the description of the instantiation of the CountryT class over several transformation
clauses:

X = MkCountryT (N), X.language = L ⇐= Y ∈ CountryE , Y.name = N, Y.language = L

X = MkCountryT (N), X.currency = C ⇐= Z ∈ CountryE , Z.name = N, Z.currency = C

Combining these clauses gives

X = MkCountryT (N), X.language = L, X.currency = C

⇐= Y ∈ CountryE , Y.name = N, Y.language = L

Z ∈ CountryE , Z.name = N, Z.currency = C

To apply this clause we would need to take the product of the source class CountryE with itself
try to bind Y and Z to pairs of objects in CountryE which have the same value on their name
attribute.

Suppose however, we had a constraint on the source database:

X = Y ⇐= X ∈ CountryE Y ∈ CountryE X.name = Y.name

That is, name is a key for CountryE . We could then use this source constraint to simplify our
previous, derived transformation clause, in order to form the new clause:

X = MkCountryT (N), X.language = L, X.currency = C

⇐= Y ∈ CountryE , Y.name = N, Y.language = L, Y.currency = C

Note that this clause does not actually give us any new information about the target database,
but that it is simpler and more efficient to evaluate.

Suppose we also have a target constraint expressing the key specification for CountryT :

X = MkCountryT (X.name) ⇐= X ∈ CountryT

We could combine this constraint with our previous transformation clause in order to get

X = MkCountryT (N), X.language = L, X.currency = C, X.name = N

⇐= Y ∈ CountryE , Y.name = N, Y.language = L, Y.currency = C

In this case the target constraint has told us how to instantiate another attribute of the ob-
ject being inserted into the class CountryT . So the target constraint is providing additional
information for the transformation.



92 PART III. THE WOL LANGUAGE

City State

str

cap_ofname

str

cities

not_cap

unit

name

is_capital

22

Figure 16: A target schema for Cities and States

A transformation program, Tr, from schema (SSrc,KSrc) to schema (STgt,KTgt), is a finite
set of source and target constraints and transformation clauses in WOLSK, where (S,K) ≡
(SSrc,KSrc) ∪ (STgt,KTgt).

Example 14.2: We will take the first schema described in examples 7.1 and 10.1 to be our source
schema. Our target schema will be given by:

CTgt ≡ {State2,City2}

and

STgt(State2) ≡ (name : str, cities : {City2})
STgt(City2) ≡ (name : str, is capital : 〈|cap of : State2,not cap : unit|〉)

with key specification

KState2
Tgt (o) ≡ VState2(o)(name)

KCity2

Tgt (o) ≡ (name 7→ VCity2(o)(name), state 7→ {o′ ∈ σState2 |o ∈ VState2(o′)(cities)})

The schema is illustrated in figure 16. Note that the variant 〈|cap of : State2,not cap : unit|〉 is
an example of a very common construction: it is similar to an optional reference or a pointer
with a possible “nil” value in a programming language such as C.

Then a transformation between the two schemas would be given by the transformation clauses

Y ∈ State2, Y.name = N ⇐= X ∈ StateA, X.name = N

W ∈ City2, W.name = N, W.is capital = inscap of(V ) ⇐=
X ∈ CityA, X.name = N, X.state.capital = X
V ∈ State2, V.name = X.state.name

W ∈ City2, W.name = N, W.is capital = insnot cap() ⇐=
X ∈ City, X.name = N, X.state.capital 6= X

W ∈ Y.cities, W.name = C ⇐=
Z ∈ CityA, Z.name = C, Y ∈ State2, Y.name = Z.state.name



14 DATABASE TRANSFORMATIONS 93

The first clause says that for each state in the source class StateA there is a corresponding state
in the target class State2 with the same name. The second clause says that for each city in the
source class CityA which is the capital of its state, there is a corresponding city in the target class
City2 with the same name and with is capital set to the state of the City, while the third clause
says that if a city in the source database is not the capital of its state, then the corresponding
city in the target class City2 has is capital set to not cap. The fourth clause says how the cities
attribute of the State2 class is populated by cities.

In addition to these clauses, we would need some constraints on the target database in order to
identify elements of State2 and City2:

X = MkState2(X.name) ⇐= X ∈ State2

X = MkCity2(W ), πnameW = X.name, πstateW = Y
⇐= X ∈ City2, Y ∈ State2, X ∈ Y.cities

Y ∈ State2, X ∈ Y.cities ⇐= X ∈ City2

X = Y = X ∈ State2, Y ∈ State2, Z ∈ X.cities, Z ∈ Y.cities

The first two of these constrains are “key constraints” on State2 and City2, and tell us how to
generate their keys. The third says that every city must be in the cities set of some state, and
the third says that no city can lie in the cities set of two distinct states.

14.3 Transformations of Instances

Definition 14.3: Suppose that Tr is a transformation program from schema SSrc to STgt, and
that ISrc is an instance of SSrc. Then an instance ITgt of STgt is said to be a Tr-transformation
of ISrc iff, for each clause (Ψ ⇐= Φ) ∈ Tr, ISrc ∪ ITgt satisfies Ψ ⇐= Φ.

Unfortunately the Tr-transformation of an instance is not, in general unique. A transformation
program will imply that certain things must be in the target database, but will not imply that
other additional things cannot be included. Consequently there may be infinitely many Tr-
transformations of a particular instance, representing the inclusion of arbitrary additional data,
and so it is necessary to characterize the unique smallest Tr-transformation when it exists.

Deterministic and Complete Transformation Programs

Definition 14.4: Suppose Tr is a set of clauses. A clause Ψ ⇐= Φ is said to be deterministic
with respect to Tr iff, for any instance I satisfying all the clauses in Tr and any environment
ρ such that dom(ρ) = Var(Φ) and [[Φ]]Iρ = T there is at most one extension of ρ, ρ′ say, such
that dom(ρ′) = Var(Ψ,Φ) and [[Ψ]]Iρ′ = T.

So a clause is deterministic if the values of the instantiation of any existential variables in the
clause are uniquely determined by the instantiations of the universal variables in the clause.



94 PART III. THE WOL LANGUAGE

Definition 14.5: Suppose I and I ′ are instances of a schema S, and fC is a family of injective
functions, fC : σC → σ′C . Then we define the relations �τf⊆ [[τ ]]I × [[τ ]]I ′ to be the smallest
relations such that p �τf p′ if

• τ ≡ C and p′ = fCp, or

• τ ≡ b and p′ = p, or

• τ ≡ (a1 : τ1, . . . , ak : τk) and p(ai) �τif p′(ai) for i = 1, . . . , k, or

• τ ≡ 〈|a1 : τ1, . . . , ak : τk|〉 and p ≡ (ai, q), p′ ≡ (ai, q′) and q �τif q′, or

• τ ≡ {τ ′} and for each q ∈ p there is a q′ ∈ p′ such that q �τ ′f q′.

We write I �f I ′ iff, for each C ∈ C, each o ∈ σC , VC(o) �τC

f V ′C(fCo).

We write I � I ′ and say that I is smaller than I ′ iff there is a family of injective functions, fC ,
such that I �f I ′.

The relation � could be thought of as a generalized subset relation, allowing for the renaming
of object identities.

Lemma 14.1: If I, I ′ and I ′′ are instances of S then

1. I � I — the relation � is reflexive;

2. if I � I ′ and I ′ � I ′′ then I � I ′′ — � is transitive; and

3. if I � I ′ and I ′ � I then I ∼= I ′.

Proof: It is clear that � is both reflexive and transitive. The third condition requires proof
however.

Suppose I and I ′ are instances such that I � I ′ and I ′ � I, say I �f I ′ and I ′ �g I. Then,
for each class C ∈ C, gC ◦ fC is an injective and hence bijective function from σC to σC , and
similarly fC ◦ gC is a bijection from σ′C to itself. Hence fC and gC are themselves bijections.

For each C ∈ C, since σC is finite, it follows that there is an integer kC such that (gC ◦ fC)k
C

=
IdσC , and similarly a k′C such that (fC◦gC)k

′C
= Idσ′C . Take k =

∏
C∈C(k

C×k′C). Then for each
C ∈ C, (gC ◦fC)k = IdσC and (fC ◦gC)k = Idσ′C . For each C ∈ C define f ′C ≡ (gC ◦fC)k−1 ◦gC .
Then f ′C ◦ fC = IdσC and fC ◦ f ′C = Idσ′C .

We can show by induction on types that, if u ∈ [[τ ]]I, v ∈ [[τ ]]I ′ are such that u �τf v and v �τf ′ u,
then v = f τ (u) and u = f ′τ (v).

By transitivity of �, we have, for each C ∈ C, o ∈ σ′C , V ′C(o) �f ′ VC(f ′C(o)). Hence, for every
o ∈ σC , f τ

C
(VC(o)) = V ′C(fC(o)) and for every o′ ∈ σ′C , f ′τ

C
(V ′C(o′)) = VτC

(f ′C(o)).



14 DATABASE TRANSFORMATIONS 95

Hence I ∼= I ′.

Definition 14.6: We say that a transformation program, Tr, is complete iff every clause in Tr is
deterministic with respect to Tr and, for any instance ISrc of SSrc, if there is a Tr-transformation
of ISrc then there is a unique (up to isomorphism) smallest such Tr-transformation. That is, if
ISrc has a Tr transformation, then there is an ITgt such that ITgt is a Tr-transformation of ISrc

and, for any Tr-transformation I ′ of ISrc, ITgt � I ′.

We are therefore interested in complete transformation programs, and in computing these unique
smallest transformations.

Example 14.3: We will describe the transformation specified by the transformation program in
example 14.2 on the instance of SSrc defined in example 7.2.

We will take our object-identities to be:

σCity2 ≡ {Phila′,Pitts′,Harris′,NYC′,Albany′}
σState2 ≡ {PA′,NY′}

(the choice of object identities is arbitrary since transformations are defined up to isomorphism
only). Our mappings are

VCity2(Phila′) ≡ (name 7→ “Philadelphia”, is capital 7→ (not cap, ∅))
VCity2(Pitts′) ≡ (name 7→ “Pittsburgh”, is capital 7→ (not cap, ∅))
VCity2(Harris′) ≡ (name 7→ “Harrisburg”, is capital 7→ (cap of,PA′))
VCity2(NYC′) ≡ (name 7→ “New York City”, is capital 7→ (not cap, ∅))

VCity2(Albany′) ≡ (name 7→ “Albany”, is capital 7→ (cap of,NY′))

and

VState2(PA′) ≡ (name 7→ “Pennsylvania”, cities 7→ {Phila′,Pitts′,Harris′})
VState2(NY′) ≡ (name 7→ “New York”, cities 7→ {NYC′,Albany′})

14.4 Normal Forms of Transformation Programs

In this section we will define a normal form for transformation clauses. A transformation clause
in normal form will completely define an insert into the target database in terms of the source
database only. That is, a normal form clause will contain no target terms in its body, and
will completely and unambiguously determine some element of the target database in its head.
Given a transformation program in which all the clauses are in normal form, the transformation
may then be easily implemented as a single pass transformation in some suitable DBPL.

Our objective will be to determine certain syntactic constraints on transformation programs
(non-recursion), such that any complete transformation program satisfying these constraints
can be converted to an equivalent program in which all the clauses are in normal form.



96 PART III. THE WOL LANGUAGE

Term Paths

We introduce the concept of term paths in order to reason about which parts of a database
a clause will access. Every term in a well-formed set of atoms will have at least one term-
path associated with it, representing the part of the database instance where it may be found.
Term paths therefore represent a way of navigating a database, starting at some class and then
following a series or attribute labels, dereferences and set inclusions.

The concept of term paths will be useful in a number of places, when trying to reason about the
information accessed or implied by clauses. We will use them in order to formalize the concept
of a formula “unambiguously” determining part of a clause.

Definition 14.7: A term path for some schema S is a pair (C, µ) where C ∈ C and µ is a string
over the alphabet

{πa|a ∈ A} ∪ {insa|a ∈ A} ∪ {!, ∈̇}

We define the typing relation `: on term paths by the rules:

` (C, ε) : {C}
` (C, µ) : {τ}
` (C, µ.∈̇) : τ

` (C, µ) : D, D ∈ C
` (C, µ.!) : τD

` (C, µ) : (a1 : τ1, . . . , ak : τk)
` (C, µ.πai) : τi

` (C, µ) : 〈|a1 : τ1, . . . , ak : τk|〉
` (C, µ.insai) : τi

Note that the type associated with a term path is dependent only on the term path itself, and
not on a type context or the atoms from which the term path arises, or any other influence.

We write TPathsS for the set of term paths, (C, µ) of a schema S such that ` (C, µ) : τ for some
type τ .

We define the relationship Φ `: between the term occurrences of Φ, Occ(Φ), and term paths,
TPathsS , to be the smallest relationship such that, for any occurrence w of a term P in Φ and
term path (C, µ), Φ ` w : (C, µ) if

1. P ≡ C and µ = ε (the empty string), or

2. P ≡!Q, w = (φ, (i, j)) and µ = µ′.! and Φ ` (φ, (i, j + 1)) : (C, µ′), or

3. P ≡ πaQ, w = (φ, (i, j)) and µ = µ′.πa and Φ ` (φ, (i, j + 1)) : (C, µ′), or

4. w = (φ, (i, j + 1)) and w′ = (φ, (i, j)) is an occurrence of a term Q ≡ insa(P ) in Φ, and
µ = µ′.insa and Φ ` w′ : (C, µ′), or

5. w = (φ, (1, 0)) where φ ≡ (P ∈̇Q), and µ = µ′.∈̇, and Φ ` (φ, (2, 0)) : (C, µ′), or

6. w = (φ, (i, 0)) where φ ≡ (P =̇Q) and i = 1 and Φ ` (φ, (2, 0)) : (C, µ), or φ ≡ (Q=̇P ) and
i = 2 and Φ ` (φ, (1, 0)) : (C, µ).



14 DATABASE TRANSFORMATIONS 97

We write Φ ` P : (C, µ) to mean Φ ` w : (C, µ) for some occurrence w of P in Φ.

Example 14.4: Consider the set of atoms

Φ ≡ W ∈ Y.cities,W.name = N,Z ∈ CityA, Z.name = N,
Y ∈ State2, Y.name = Z.state.name

for the schema of the previous examples. Here the term N has two term paths: Φ ` N :
(CityA, ∈̇!πname) and Φ ` N : (State2, ∈̇!πcities∈̇!πname).

The following lemma tell us that the typing rules for term paths and for term occurrences in
a well-formed set of atoms coincide, and further, that for any term path for which the typing
rules assign a type, there is a set of atoms which include a term with that term path.

Lemma 14.2:

1. If Φ is a well-formed set of atoms and w a term occurrence in Φ such that Φ ` w : (C, µ)
in Φ and Φ ` w : τ then ` (C, µ) : τ .

2. If (C, µ) is a term path and τ a type, such that ` (C, µ) : τ , then there is a well-formed
set of atoms, Φ, and a term P occurring in Φ such that Φ ` P : (C, µ). Further there is
a unique (up to variable renaming) smallest such set of semi-normal form atoms, Φ, such
that Φ ` X : (C, µ) for some X ∈ Var(Φ), and for any set of snf atoms Φ′ such that Φ′

does not contain any atoms of the form Z=̇Y and Φ′ ` X : (C, µ) for some X ∈ Var(Φ′),
there is a subset Φ′′ ⊆ Φ′ such that Φ′ is a variable renaming of Φ.

Proof: The first part follows by a simple induction on the proof that Φ ` P : (C, µ).

For the second part, we will proceed by induction on the length of µ. For any term path (C, µ)
we will construct a set of snf atoms NavX(C,µ) such that

1. NavX(C,µ) ` X : (C, µ),

2. for any set of snf atoms Φ if |Φ| ≤ |NavX(C,µ)| and Φ ` Y : (C, µ) for some Y ∈ Var(Φ) then
Φ can be formed from NavX(C,µ) by renaming variables, and

3. for any set of snf atoms Φ not containing equality atoms on variables, if Φ ` Y : (C, µ) for
some Y ∈ Var(Φ), then Φ contains a set of atoms Φ′ which can be formed from NavX(C,µ)

by renaming variables.

We will show the base case and one of the induction cases. The other induction cases are all
similar.

For a term path (C, ε), consider the set of atoms NavX(C,ε) = {(X=̇C)}. Then NavX(C,ε) ` X : (C, ε)
and it is clear that there is no smaller set of snf atoms containing a term with type path (C, ε).



98 PART III. THE WOL LANGUAGE

Further any set of semi-normal form atoms containing a term occurrence with type path (C, ε)
must contain an atom of the form Y =̇C for some Y .

Suppose µ ≡ µ′πa. Consider the set of atoms NavX(C,µ) = NavY(C,µ′)∪{X=̇πaY }, for some variable
Y . Then NavX(C,µ) ` X : (C, µ) since NavY(C,µ′) ` Y : (C, µ′). Suppose Φ is a set of snf atoms such
that |Φ| ≤ |NavX(C,µ)|, and there is an occurrence of a term Y in Φ such that Φ ` Y : (C, µ) for
some Y ∈ Var(Φ). Observe from the construction of term paths that Φ must contain an atom
of the form Z=̇πaW in Φ. Further there exists a set of atoms Φ′ ⊆ Φ \ {(Z=̇πaW )} such that
Φ′ ` W : (C, µ′). But |Φ′| ≤ |NavY(C,µ′)|. Hence, by our induction hypothesis, Φ′ can be formed
from NavY(C,µ′) by renaming variables. Hence Φ′ ∪ {Z=̇πaW} ⊆ Φ can be formed from NavX(C,µ)

by renaming variables. Now suppose Φ is a set of snf atoms containing no equality atoms on
variables, and Φ ` Z : (C, µ). Observe from the construction of term paths that Φ must contain
an atom Z=̇πaW where Φ ` W : (C, µ′). Then, by our induction hypothesis, Φ must contain a
subset of atoms Φ′ such that Φ′ ` W : (C, µ′) and Φ′ can be formed by renaming variables in
NavY(C,µ′). Then the set of atoms Φ′ ∪{Z=̇πaW} ⊆ Φ can be formed from NavX(C,µ) by renaming
variables.

The other induction cases are similar.

From this lemma we can get the intuition that a term path corresponds to the subset of a set
of atoms necessary in order to navigate to a particular location in the database.

Characterizing Formulae

We introduce the concept of characterizing formula as a means of uniquely characterizing a
particular element of a database. Notice that this is more specific than a term-path, which
characterizes a place in the database. In particular, if a value occurs in some set in a database
instance, then its term path will not characterize which element of the set it is.

Characterizing formulae are introduced as an attempt to generalize the notion of keys to non-
class types, and, in particular, to deal with nested set data-types. In section 14.5 we will see
that things can be simplified considerably if we avoid nested set types.

Definition 14.8: Suppose Tc is a set of clauses, Θ is a finite set of snf atoms, and T, S ⊆ Var(Θ)
are sets of variables. We say that T is characterized by S in Θ, Tc iff for any instance I
satisfying each clause in Tc, and any I-environments ρ and ρ′, if [[Θ]]Iρ = T and [[Θ]]Iρ′ = T,
then ρ(X) = ρ′(X) for each X ∈ T iff ρ(Y ) = ρ′(Y ) for each Y ∈ S.

In other words, if ρ is an environment satisfying Θ, then the values of ρ on T are uniquely
determined by the values of ρ on S and vice versa.

Definition 14.9: Suppose Tc is a set of clauses, and (C, µ) a term path. A characterizing
formula for (C, µ) in Tc is a set of atoms Θ together with a set of variables {Y1, . . . , Yn} ⊆
Var(Θ) and a distinguished variable X ∈ Var(Θ) such that

1. NavX(C,µ) ⊆ Θ



14 DATABASE TRANSFORMATIONS 99

2. The set of variables Var(NavX(C,µ)) is characterized by {Y1, . . . , Yn} in Θ, Tc.

We write ΘX(Y1, . . . , Yn) for the characterizing formula for some type path (C, µ) with Θ as its
set of atoms, {Y1, . . . , Yn} as its set of characterizing variables and distinguished variable X.

In other words, a characterizing formula, together with an instantiation of its variables, will
uniquely characterize a particular element of a database.

It is clear that there are some trivial characterizing formula, such as ΘX(Y1, . . . , YN ) where
Θ = NavX(C,µ) and {Y1, . . . , YN} = Var(Θ). However there are also some more useful examples
of characterizing formula.

Example 14.5: A characterizing formula for the term path (State′, ∈̇) in the transformation
program of example 14.2 would be

ΘX(N) ≡ X ∈ State2, π
name(!X) = N

since the program implies the target constraint

X = Y ⇐= X ∈ State2, Y ∈ State2, π
name(!X) = N, πname(!Y ) = N

A characterizing formula for the term path (City′, ∈̇) would be

Θ′X(N,Z) ≡ X ∈ City2, π
name(!X) = N, Z ∈ State2, X ∈ πcities(!Z)

The following lemma tells us that the characterizing formulas for any other target terms paths
could be formed from these two.

Lemma 14.3:

1. If ` (C, µ) : (a1 : τ1, . . . , ak : τk), ΘY (V ) is a characterizing formula for (C, µ) and
Θ′ ≡ (Θ ∪ {X=̇πaiY }), then Θ′X(V ) is a characterizing formula for (C, µ.πai).

2. If ` (C, µ) : 〈|a1 : τ1, . . . , ak : τk|〉, ΘY (V ) is a characterizing formula for (C, µ) and
Θ′ ≡ (Θ ∪ {Y =̇insaiX}), then Θ′X(V ) is a characterizing formula for (C, µ.insai).

3. If ` (C, µ) : D, D ∈ C, ΘY (V ) is a characterizing formula for (C, µ) and Θ′ ≡ (Θ ∪
{X=̇!Y }), then Θ′X(V ) is a characterizing formula for (C, µ.!).

Proof: It is sufficient to observe from the semantics of atoms, that for each of the atoms
(X=̇πaY ), (Y =̇insaX) and (X=̇!Y ), for any instance I and instantiation of the variable Y ,
there is at most one instantiation of the variable X which makes the atom true.



100 PART III. THE WOL LANGUAGE

Consequently, if we are describing a database instance, or a transformation, we only need char-
acterization formulae for paths of the form (C, µ.∈̇).

In addition, in the case of a keyed schema, for each class C ∈ C the formula

ΘX(Z) ≡ {X ∈ Y, Y = C,X = MkC(Z))

is a characterization formula for the term path (C, ∈̇). This gives us a useful special case: if
every set type occurring in a schema S is of the form {C}, that is a set of values of class type,
and we have a key specification on S, then we can automatically find useful characterization
formulas for any term path in S.

In fact the only cases where one cannot automatically generate useful characterizing formulae
is when our schema involves nested set types: a nested set type is a type of the form {τ} where
τ involves some type of the form {τ ′}. In such cases it is necessary to ensure that there are
constraints which allow for the construction of characterizing formulae for any term paths of
the form (C, µ∈̇) ∈ TPathsS . In section 14.5 we will show how these notions can be simplified,
and a system of characterizing formulae can be automatically generated, in the case where we
do not allow nested set types.

In the following definitions we use characterizing formulae in order to get an analog of the notion
of keys for sets of non-object identity values.

Definition 14.10: A characterizing system for a set of clauses Tc, consists of a finite set of
term paths, T ⊆ TPathsS , such that for each (C, µ) ∈ T the symbol ! occurs at most once in µ,
and for each term path (C, µ) ∈ T a set of characterizing formula for (C, µ), F (C,µ), such that,
for any instance I, term path (C, µ) ∈ T and environment ρ such that [[NavX(C,µ)]]Iρ = T, there
is at most one characterizing formula ΘX(Y1, . . . , Yn) ∈ F(C,µ) such that [[Θ]]Iρ′ = T for some
extension ρ′ of ρ.

So a characterizing system provides a means of uniquely identifying values of certain type paths
in an instance. The uniqueness conditions in the definition ensure that there are never multiple
characterizing formula in F (C,µ) for some (C, µ) characterizing the same element of an instance.
Recall that, if ΘX(Y1, . . . , Yn) is a characterizing formula for (C, µ) then NavX(C,µ) ⊆ Θ.

The graph of a characterizing system (T ,FT ), written G(T ,FT ), is a digraph such that

1. the nodes of G(T ,FT ) are the term paths TPathsS , and

2. G(T ,FT ) contains an edge (C ′, µ′) → (C, µ) iff (C, µ) ∈ T and there is a characterizing
formula ΘX(Y1, . . . , Yn) ∈ F (C,µ) such that Θ ` Yi : (C ′, µ′) for some i ∈ 1, . . . , n (where
Θ is the set of atoms of the characterizing formula ΘX(Y1, . . . , Yn)).

A characterizing system (T ,FT ) is acyclic if the graph G(T ,FT ) is acyclic.

A transformation clause Ψ ⇐= Φ is said to respect a characterizing system (T ,FT ) iff for
every variable X ∈ Var(Ψ ∪ Φ) either X ∈ Var(Φ) or there is a type path (C, µ) ∈ T such that
Ψ ∪ Φ ` X : (C, µ) and Θ ⊆ Ψ ∪ Φ for some characterizing formula ΘX(Y1, . . . , Yn) ∈ F (C,µ).



14 DATABASE TRANSFORMATIONS 101

Normal Forms

Definition 14.11: Suppose that Tr is a transformation program, with target constraints Tc, and
(T ,FT ) is an acyclic characterizing system for Tc.

A clause Ψ ⇐= Φ is in normal form for Tr and (T ,FT ) iff

1. Ψ ⇐= Φ is in semi-normal form;

2. Φ contains no target terms;

3. Ψ ⇐= Φ respects (T ,FT );

4. If Φ ∪ Ψ ` X : (C, µ) for some X and some target term path (C, µ) and ` (C, µ) :
(a1 : τ1, . . . , ak : τk), then for each ai, Φ ∪ Ψ contains an atom (Y =̇πaiX) for some
Y ∈ Var(Φ ∪Ψ);

5. If Φ ∪ Ψ ` X : (C, µ) for some X and some target term path (C, µ) and ` (C, µ) : 〈|a1 :
τ1, . . . , ak : τk|〉, then Φ ∪ Ψ contains an atom insaiY =̇X for some Y ∈ Var(Φ ∪ Ψ) and
some ai;

6. If Φ∪Ψ ` X : (C, µ) for some X and some target path (C, µ), and ` (C, µ) : b, then either
X ∈ Var(Φ) or Ψ ∪ Φ contains an atom X=̇cb for some constant symbol cb.

The first requirement, that the clause be in snf, serves to simplify the later requirements. The
second requirement implies that the body of the clause can be evaluated by looking at the source
databases only, and hence the clause can be applied in a single-pass, non-recursive manner.

The remaining requirements ensure that the head of the clause uniquely and unambiguously
determines some part of the target database. In particular, 3 implies that every variable in the
head of the clause is characterized by the universal variables of the clause. Note that we don’t
have a requirement similar to the fourth and fifth requirements for set types: that is, we don’t
require that, if Ψ ⇐= Φ contains a term of some path type (C, µ), where ` (C, µ) : {τ}, then the
clause must specify the contents of the set. This is because we are looking at unique smallest
transformations, so the set is uniquely determined anyway: if no elements of a term of set type
are specified then the resulting set will be empty.

Example 14.6: The following are normal-form clauses equivalent to the transformation clauses



102 PART III. THE WOL LANGUAGE

of example 14.2:

Y ∈ State′,W =!Y,N = πnameW ⇐= X ∈ State, U =!X,N = πnameU

Y ∈ State′,W ∈ City′, U =!Y,N = πnameU, V =!W,C = πnameV,
T = πiscapV, T = insyes(), S = πcitesU,W ∈ S

⇐= X ∈ State, Q =!X,N = πnameQ,Z ∈ City, R =!Z,C = πnameR,
Z = πstateQ,X = πcapitalR

Y ∈ State′,W ∈ City′, U =!Y,N = πnameU, V =!W,C = πnameV,
T = πiscapV, T = insno(), S = πcitesU,W ∈ S

⇐= X ∈ State, Q =!X,N = πnameQ,Z ∈ City, R =!Z,C = πnameR,
Z = πstateQ,O = πcapitalR,X 6= O

Proposition 14.4: Suppose Tr is a transformation program consisting of source constraints and
transformation clauses, such that for some characterizing system (T ,FT ), every transformation
clause in Tr is in normal form for (T ,FT ) and Tr. Suppose further that, for any instance I
satisfying Tr, target class C ∈ CTgt, transformation clause ∆ = (Ψ ⇐= Φ) in Tr such that
Ψ ∪ Φ ` X : C for some X ∈ Var(Ψ), and environment ρ such that [[Ψ ∪ Φ]]Iρ = T, there
is a transformation clause ∆′ = (Ψ′ ⇐= Φ′), environment ρ′ and variable Y ∈ Var(Ψ′) such
that [[Ψ′ ∪ Φ′]]Iρ′ = T, ρ′(Y ) = ρ(X) and Ψ contains an atom of the form Z=̇!Y . Then Tr is
complete.

Proof: First we must show that, if a clause Ψ ⇐= Φ is in normal form for some characterizing
system (T ,FT ), then Ψ ⇐= Φ is deterministic. Suppose that I is an instance and ρ an environ-
ment such that [[Φ]]Iρ = T. Suppose that ρ′ ane ρ′′ are extensions of ρ such that [[Ψ]]Iρ′ = T and
[[Ψ]]Iρ′′ = T. We need to show that, for every X ∈ Var(Ψ ∪ Φ), ρ′(X) = ρ′′(X). If X ∈ Var(Φ)
the result is clear. If X ∈ Var(Ψ) \Var(Φ) then ΘX

(C,µ)(Y1, . . . , Yn) ⊆ Ψ ∪Φ for some (C, µ) ∈ T
such that Ψ ∪ Φ ` X : (C, µ). The proof then proceeds by induction of the length of paths in
G(T ,FT ) originating from (C, µ).

Next, suppose we have a transformation program Tr and characterizing system (T ,FT ) as
described in the proposition. Suppose ISrc is an instance of SSrc such that there is an instance
ITgt of STgt with I = ISrc ∪ ITgt satisfying every clause in Tr.

We will first prove that we can build a minimal instance satisfying Tr by extracting those parts
of the instance ITgt that are actually implied by the transformation program.

For each each characterizing formula ΘX(Y1, . . . , Yk) ∈ F (C,µ), (C, µ) ∈ T , let us assume a
function symbol FΘ

(C,µ) of arity k. Let Alg be the freely generated algebra with values and
objects occurring in ISrc as its base values, and function symbols FΘ

(C,µ).

Suppose ∆ ≡ (Ψ ⇐= Φ) is a transformation clause in Tr, and ρ is an I-environment such that
[[Φ]]Iρ = T. Then, for each X ∈ Var(Ψ ∪Φ) we assign a term of the algebra Alg, say Algρ(X),



14 DATABASE TRANSFORMATIONS 103

defined by

Algρ(X) ≡


ρ(X) if X ∈ Var(Φ)
FΘ

(C,µ)(Algρ(Y1), . . . ,Algρ(Yn)) if X 6∈ Var(Φ)
and ΘX(Y1, . . . , Yn) ∈ Ψ ∪ Φ

(Note that, if X ∈ Φ then X is a source term, and so ρ(X) is a value occurring in ISrc).

Next we define Assign : Alg ∼→ D(I) to be the smallest mapping (ordered pointwise by �Id)
such that:

1. Assign(u) = u for u ∈ D(I)

2. If ∆ ≡ (Ψ ⇐= Φ) is a transformation clause in Tr, and ρ is an I-environment such that
[[Φ]]Iρ = T, and ρ′ is the (unique) extension of ρ such that dom(ρ′) = Var(Ψ ∪ Φ) and
[[Ψ]]Iρ′ = T, then for any X ∈ Var(Ψ) \Var(Φ)

(a) If Ψ ∪ Φ ` X : C, C ∈ CTgt, then Assign(Algρ(X)) = ρ′(X),

(b) If Ψ ∪ Φ ` X : (a1 : τ1, . . . , an : τn) and Ψ ∪ Φ contains the atoms Yi=̇πaiX for i =
1, . . . , n, then Assign(Algρ(X)) = (a1 7→ Assign(Algρ(Y1)), . . . , an 7→ Assign(Algρ(Yn)),

(c) If Ψ ∪ Φ ` X : 〈|a1 : τ1, . . . , an : τn|〉 and Ψ ∪ Φ contains an atom X=̇insaiY then
Assign(Algρ(X)) = (ai,Assign(Algρ(Y )),

(d) If Ψ ∪ Φ ` X : b and Ψ ∪ Φ contains the atom X=̇cb then Assign(Algρ(X)) = c,

(e) If Ψ ∪ Φ ` X : {τ} and Ψ ∪ Φ contains the atom Y ∈̇X, then Assign(Algρ(Y )) ∈
Assign(Algρ(X)).

Now, for each class C ∈ CTgt form the set of object identities σ′C ⊆ σC defined by

σ′C ≡
{
o ∈ σC

∣∣∣∣∣ o = ρ(X) for some (Ψ ⇐= Φ) ∈ Tr,
X ∈ Var(Ψ) and ρ such that [[Ψ ∪ Φ]]Iρ = T

}

Define V ′C : σ′C → [[τC ]]σ′CTgt to be such that, if ∆ ≡ (Ψ ⇐= Φ) is a transformation clause in
Tr, ρ is such that [[Ψ ∪ Φ]]Iρ = T, and Ψ ∪ Φ contains the atom Y =̇!X where Ψ ∪ Φ ` X : C,
then V ′C(ρ(X)) = Assign(AlgρY ).

Then I ′Tgt = (σ′CTgt ,V ′CTgt) is an instance of STgt, and satisfies Tr.

Finally it is necessary to show that I ′Tgt is smaller than any other Tr-transformation of ISrc.

Suppose I ′′Tgt is an instance of STgt such that I ′′Tgt ∪ ISrc satisfies every clause in Tr. For any
C ∈ C and o ∈ σ′C , there is a transformation clause ∆ ≡ (Ψ ⇐= Φ) an ISrc environment ρ and
an X ∈ Var(Ψ), such that o = ρ′(X) where ρ′ is an extension of ρ such that [[Ψ ∪ Φ]]Iρ′ = T.
We define fC(o) ∈ σ′′C to be the (unique) object identity such that fC(o) = ρ′′(X) where ρ′′ is
an extension of ρ such that [[Ψ ∪ Φ]](I ′′Tgt ∪ ISrc)ρ′′ = T, which exists since I ′′Tgt ∪ ISrc satisfies



104 PART III. THE WOL LANGUAGE

∆. It follows from the definitions of characterizing systems and characterizing formulae that the
functions fC are injective.

If ∆ ≡ (Ψ ⇐= Φ) is a transformation clause, ρ an environment such that [[Φ]]Iρ = T and ρ′ the
extension of ρ such that [[Ψ]](I ′′Tgt ∪ ISrc)ρ′ = T, then we can show by induction on types that,
for each X ∈ Var(Ψ) such that Ψ ∪ Φ ` X : τ Assign(Algρ(X)) �τf ρ′(X).

Hence we get, for each C ∈ CTgt, o ∈ σC , V ′C(o) �τf V ′′C(fC(o)).

Hence I ′Tgt � I ′′Tgt as required.

A transformation program in normal form has the advantage that it can be easily evaluated as
a single-pass transformation, or translated into a variety of database programming languages,
for example using comprehension syntax [14].

Proposition 14.4 tells us that the only way a normal form transformation program can fail to
be complete is if it generates some object identities and fails to associate values with them.
Though the conditions on transformation programs of proposition 14.4 seem quite complicated,
they are in practice often obvious or easy to check. Further, it is straightforward to check
these conditions for a transformation of a particular instance, so that one knows that, if a
transformation does provide a value associated with every object identity it produces for a
particular source database instance, then the resulting target instance is the unique smallest
instance satisfying that transformation.

14.5 Simplifying Characterizing Formula

The mechanism of characterizing formulae and their use in defining normal form clauses, intro-
duced in section 14.4 seems rather complicated and unintuitive. In general it is not possible to
automatically generate characterizing formulae for a term path, or to test whether there exist
characterizing formulae which form a characterizing system satisfied by a particular transforma-
tion program. Consequently it is worth looking at why characterizing formulae are necessary,
and in what situations we can avoid or simplify them.

The purpose of a characterizing formula is to uniquely specify some element to be inserted into
a target database. We noted in section 14.4 that if we have characterizing formulae for term
paths of the form (C, µ. ∈), then we can automatically generate characterizing formulae for any
other term paths. This is the consequence of the fact that, if a term P is of record, variant or
class type, then its components, accessed using projection, variant insertion or dereferencing,
are uniquely determined by P . This is not the case for terms of set type: if we have a set of
atoms Φ containing an atom X ∈ Y , then even if we know exactly what set Y refers to in the
database there may still be a choice of possible instantiations for X.

We have already seen that, in the case of a simply keyed schema, (S,K), it is possible to
automatically generate useful characterizing formulae for term paths of the form (C, ∈̇), namely

ΘX(Y ) ≡ {X∈̇Z, Z=̇C, X=̇MkC(Y )}



14 DATABASE TRANSFORMATIONS 105

A natural question to ask is therefore, what other term paths are there useful, automatically
generatable characterizing formula for, and, in particular, what are the problem cases?

It turns out that the most difficult terms to characterize are those involving nested sets. A
nested set type is a type of the form {τ} where τ in turn involves a set type {τ ′}. To see why
such data-types are problematic, let us look at a simple example.

Example 14.7: Suppose we have a source schema with a single class, CSrc = {D}, and

SSrc(D) ≡ (a : int, b : {int})

and a target schema with a single class, CTgt = {C}, and

STgt(C) ≡ (a : int, b : {{int}})

Suppose that the key specifications of SSrc and STgt are given by κC ≡ int, κD ≡ int, and
constraints

X = MkC(X.a) ⇐= X ∈ C
Y = MkD(Y.a) ⇐= Y ∈ D

Lets look at transformations from SSrc to STgt specified by the clauses:

X ∈ C, X.a = Y.a ⇐= Y ∈ D
X ∈ C, X.a = Y.a, W ∈ X.b, Z ∈W ⇐= Y ∈ D, Z ∈ Y.b

So for every object in D there is a corresponding object in C with the same value on its a
attribute. Further for every integer in the b attribute of an object in D, the integer is also in
one of the sets in the b attribute of the corresponding object in C. It is clear that there is no
unique smallest transformation of a general instance of SSrc.

The problem is that there is nothing to tell us which of the sets in the b attribute of an object
in C should contain a particular integer: we need more constraints. Further there is no obvious
choice of constraint to use. There are various possibilities: X.b should always be a singleton
set, or should be a set of singleton sets, or should consist of two sets of even and odd numbers,
and so on. None of these constraints seem particularly natural, and proving that one of them
sufficient to characterize a term with type path (C,∈ .!.πb. ∈) is potentially difficult.

Suppose we limit ourselves to dealing with target databases which do not involve nested set
types. Then can we automatically find useful characterizing formulae? In this case it turns out
that we can.

A schema S with classes C is said to be non-nested iff, for each class C ∈ C, the type S(C)
contains no nested-set types.

Suppose we have source and target simply-keyed schemas, (SSrc,KSrc) and (STgt,KTgt), and
STgt is a non-nested schema. For any target type path (C, µ), where µ = µ′.∈̇, we have:



106 PART III. THE WOL LANGUAGE

1. If ` (C, µ) : (a1 : τ1, . . . , an : τn) then

ΘX(Y1, . . . , Yn) ≡ NavX(C,µ) ∪ {Y1=̇πa1X, . . . , Yn=̇πanX}

is a characterizing formula for (C, µ);

2. If ` (C, µ) : 〈|a1 : τ1, . . . , an : τn|〉 then for i = 1, . . . , n,

ΘX(Y ) ≡ NavX(C,µ) ∪ {X=̇insaiY }

is a characterizing formula for (C, µ).

3. If ` (C, µ) : b then, for any constant symbol cb

ΘX() ≡ NavX(C,µ) ∪ {X=̇cb}

is a characterizing formula for (C, µ).

What makes these formulae nice is that the conditions already in the definition of normal-
form clauses, which are necessary to ensure completeness, are sufficient to ensure that these
characterizing formulae are respected.

This leads us to a simplified definition of normal forms for non-nested target schemas:

Definition 14.12: Suppose that Tr is a transformation program from source schema (SSrc,KSrc)
to target non-nested schema (STgt,KTgt).

A clause Ψ ⇐= Φ is in non-nested normal form for Tr iff

1. Ψ ⇐= Φ is in semi-normal form;

2. Φ contains no target terms;

3. If Φ ∪ Ψ ` X : (C, ε) for some X and some C ∈ CTgt, then Φ ∪ Ψ contains an atom
X=̇MkCY for some variable Y ∈ Var(Φ ∪Ψ).

4. If Φ ∪ Ψ ` X : (C, µ) for some X and some target term path (C, µ) and ` (C, µ) :
(a1 : τ1, . . . , ak : τk), then for each ai, Φ ∪ Ψ contains an atom (Y =̇πaiX) for some
Y ∈ Var(Φ ∪Ψ);

5. If Φ ∪ Ψ ` X : (C, µ) for some X and some target term path (C, µ) and ` (C, µ) : 〈|a1 :
τ1, . . . , ak : τk|〉, then Φ ∪ Ψ contains an atom insaiY =̇X for some Y ∈ Var(Φ ∪ Ψ) and
some ai;

6. If Φ∪Ψ ` X : (C, µ) for some X and some target path (C, µ), and ` (C, µ) : b, then either
X ∈ Var(Φ) or Ψ ∪ Φ contains an atom X=̇cb for some constant symbol cb.



14 DATABASE TRANSFORMATIONS 107

It is clear that this is a more usable and easily checked definition than definition 14.11. Further
it does not seem that restricting our attention to non-nested target schemas is a major limitation
in practice: deeply nested data structures may still be represented by inserting addition object-
identities and classes. The author therefore believes that practical implementation work on
WOL or other similar database transformation techniques should concentrate on the case of
target databases which do not involve nested sets.

14.6 Unifiers and Unfoldings

Our algorithm for converting clauses into normal form works by repeatedly unfolding a target
clause on a series of transformation clauses until the target cause is in normal form. The process
starts with a target clause which completely describes part of the target database.

Definition 14.13: A description clause for a target database schema STgt is a semi-normal
form clause of the form

Φ ⇐= Φ

where

1. Φ contains no source terms and atoms of the form X 6∈ Y , X 6= Y or X = Y (X and Y
variables);

2. if Φ ` X : (C, µ) and (C, µ) : (a1 : τ1, . . . , ak : τk) then, for each ai, Φ contains an atom
Y =̇πaiX for some Y; and

3. if Φ ` X : (C, µ) and (C, µ) : 〈|a1 : τ1, . . . , ak : τk|〉 then, for some ai and some Y , Φ
contains the atom X=̇insaiY .

So the head of a description clause satisfies the requirements for a normal form clause, but the
body is identical to the head.

However, as we shall see in section 14.7, merely applying all possible sequences of unfoldings is
unlikely to be efficient, and may not even terminate.

Unifiers

Unifiers map the variables of a target clause to those of an unfolding (transformation) clause,
so that the atoms of the two clauses can be matched and the target clause unfolded. A variable
of the unfolding clause may match multiple universal variables from the target clause, although
each target variable can match at most one variable from the unifying clause.



108 PART III. THE WOL LANGUAGE

Definition 14.14: Suppose Ξ ≡ (Ψt ⇐= Φt) and ∆ ≡ (Ψu ⇐= Φu) are two clauses in semi-normal
form with disjoint variables. A unifier from ∆ to Ξ is a partial mapping

U : var(Φt)
∼→ var(Φu ∪Ψu)

which respects types. That is, if a variable X has type τ in Ξ and X is in the domain of U , then
U(X) has type τ in ∆.

If Φ is a set of atoms, we write U(Φ) for the result of replacing each occurrence of a variable X
in Φ, where X is in the domain of U , by U(X). If Ξ ≡ Ψt ⇐= Φt is a clause, we write U(Ξ) for
the clause U(Ψt) ⇐= U(Φt).

Lemma 14.5: If Ξ and ∆ are clauses and U is a unifier from ∆ to Ξ, then Ξ |= U(Ξ).

Proof: Suppose Ξ ≡ (Ψ ⇐= Φ), and that I is an instance satisfying Ξ. Suppose that ρ is an
environment such that [[U(Φ)]]Iρ = T. Define the environment ρ′ with dom(ρ′) = Var(Φ) by

ρ′(X) ≡
{
ρ(U(X)) if X ∈ dom(U)
ρ(X) otherwise

Then [[Φ]]Iρ′ = T. Hence there is an extension ρ′′ of ρ′ with dom(ρ′′) = Var(Ψ ∪ Φ) such that
[[Ψ]]Iρ′′ = T. Define the environment ρ′′′ with dom(ρ′′′) = Var(U(Ψ) ∪ U(Φ)) by

ρ′′′(X) ≡
{
ρ(X) if X ∈ Var(U(Φ))
ρ′′(X) otherwise

Then [[U(Ψ)]]Iρ′′′ = T. Hence I satisfies U(Ξ).

Unfolding

Let Ξ and ∆ be semi-normal form clauses as before, and U a unifier from ∆ to Ξ. Define
Unfold∗(Ξ,∆,U) by

Unfold∗(Ξ,∆,U) ≡ (Ψ ⇐= Φ)

where

Ψ ≡ U(Ψt) ∪ (Ψu \ U(Φt))
Φ ≡ (U(Φt) \Ψu) ∪ Φu

Define Unfold′(Ξ,∆,U) to be the set of minimal well-formed clauses Ψ ⇐= Φ∗ (ordered by the
subset ordering on the heads and bodies of clauses), such that Φ ⊆ Φ∗ ⊆ U(Φt) ∪ Φu, where
Unfold∗(Ξ,∆,U) ≡ Ψ ⇐= Φ. So Unfold′(Ξ,∆,U) is formed by adding a minimal set of atoms
from Φt to Φ necessary to make it range-restricted. Since there may be several ways of adding
atoms in order to preserve range restriction, Unfold′ is set valued.

Define Unfold(Ξ,∆,U) to be the set of clauses Ψ ⇐= Φ such that Ψ ⇐= Φ is in semi-normal
form and there is an equivalent clause (Ψ′ ⇐= Φ′) ∈ Unfold′(Ξ,∆,U). So Unfold(Ξ,∆,U) is
formed by taking the clauses of Unfold′(Ξ,∆,U) and combining any variables that are implied
to be equal.



14 DATABASE TRANSFORMATIONS 109

Unfoldable Clauses

We would like to capture the idea of when the unfolding of some target clause on a transformation
clause and unifier is valid, and particularly when it helps to move the target clause towards
normal form. For this to be the case, we want to make sure that some atoms will be removed
from the body of the target clause as a result of the unfolding. The problem with this is that
it may be necessary to put back some atoms, even though they are matched by the head of the
unfolding clause, in order to maintain range restriction. We therefore concentrate on making
sure that an unfolding will match some atoms which will not have to be put back because they
do not play a part in maintaining range restriction.

Suppose Φ is a set of snf atoms. A variable X ∈ Var(Φ) is said to be relatively base in Φ iff
Φ contains no atoms of the forms X=̇insaY , Y =̇πaX, Y =̇!X or Y ∈̇X, for any variable Y .

An atom φ ∈ Φ is said to be relatively base in Φ iff φ contains a variable which is relatively
base in Φ.

Definition 14.15: Suppose Ξ ≡ (Ψt ⇐= Φt) and ∆ ≡ (Ψu ⇐= Φu) are semi-normal form clauses,
and U a unifier from ∆ to Ξ. Then an atom φ ∈ Φt is said to be caught by the unfolding of Ξ
on ∆, U iff φ is relatively base in Φt and U(φ) ∈ Ψu.

We write Caught(Ξ,∆,U) to be the set of atoms caught by the unfolding of Ξ on ∆, U .

Note that, if (Ψ ⇐= Φ) ∈ Unfold(Ξ,∆,U) and φ ∈ Caught(Ξ,∆,U) then φ 6∈ Φ. That is, any
atom caught by a transformation will be successfully removed from the target clause.

Definition 14.16: Ξ is said to be unfoldable on ∆, U iff

1. There is no variable in X ∈ var(Ψu) \ var(Φu) such that X ∈ var(Φ) for some clause
(Ψ ⇐= Φ) ∈ Unfold(Ξ,∆,U);

2. Caught(Ξ,∆,U) 6= ∅

The first condition says that no existential variables in the unfolding clause become universal
variables in the resulting clause, while the second condition states that the unfoldings are not
trivial: that at least one atom was removed from the target clause in each unfolding.

Lemma 14.6: If U is a unifier from ∆ to Ξ and (Ψ ⇐= Φ) ∈ Unfold(Ξ,∆,U), then ∆,Ξ |= Ψ ⇐=
Φ.

Proof: Suppose (Ψ ⇐= Φ) ∈ Unfold(Ξ,∆,U). Then (U(Φt)\Ψu)∪Φu ⊆ Φ and Ψ ⊆ U(Ψt)∪Ψu.

Suppose I is an instance such that I satisfies ∆ and Ξ, and ρ is an environment such that
[[Φ]]Iρ = T. Then Φu ⊆ Φ so [[Φu]]Iρ = T. Hence, since I satisfies ∆, there is an extension ρ′ of
ρ such that [[Ψu]]Iρ′ = T. But U(Φt) ⊆ Φ ∪Ψu, so [[U(Φt)]]Iρ′ = T. From the previous lemma,
I satisfies U(Ξ), so there is an extension ρ′′ of ρ′ such that [[U(Ψt)]]Iρ′′ = T. That is, there is
an extension ρ′′ of ρ such that [[Ψ]]Iρ′′ = T. Hence I satisfies Ψ ⇐= Φ.



110 PART III. THE WOL LANGUAGE

14.7 Recursive Transformation Programs

Intuitively a recursive transformation program is one that admits an infinite series of unfoldings
of clauses. It seems clear that if a transformation program is recursive then we can not hope to
find an equivalent program in which all the transformation clauses are in normal form. However it
is not decidable whether a transformation program admits such an infinite series of unfoldings.
Consequently it is necessary to find some stronger test which ensures that a transformation
program does not admit any such infinite sequences of unfoldings, but which allows as many
useful non-recursive transformation programs as possible.

For example the following clause, representing a transitive closure property, is clearly recursive:

W ∈ C,W.a = X,W.b = Y ⇐=
U ∈ C, V ∈ C,U.a = X,U.b = Z, V.a = Z, V.b = Y

If we were to include this clause in a transformation program then we could unfold it infinitely
many times, never reaching a normal form.

Traditionally, in Datalog, recursion is defined in terms of the dependency graph of a program:
the dependency graph has nodes for each predicate symbol, and has an arrow from one predicate
symbol to another if the program contains a clause with the first symbol occurring in the body
and the second symbol as the head. A Datalog program is then said to be recursive if it’s
dependency graph contains a cycle.

So for example the clause above would be considered as recursive in Datalog, because the
dependency graph would contain an edge from the symbol R to itself.

On the other hand, the following clause in not recursive in our language (though it could still
comprise part of a recursive program together with some other clauses), even though it would
be considered to be recursive using the datalog definition of recursion.

X.b = Y ⇐= X ∈ C,X.a = Y

This can be explained by saying that our language works at a finer level than Datalog: in Datalog
such a clause would be considered to be defining an element of C in terms of itself, while in our
language it is considered to be determining the b-attribute of an element of C in terms of the
a-attribute of the element of C.

Consequently we would like a finer notion of non-recursive programs, which disallows any trans-
formation programs such as the first, which do admit infinite series of unfoldings, but which
allows for as many transformation programs that do not admit such infinite sequences of un-
foldings as possible.

Note that the notion of a recursive transformation program is a syntactic, rather than a semantic
one. Consequently, given a recursive transformation program, it is quite possible that there is
an equivalent non-recursive, and therefore normalizable, transformation program. However the
problem of determining whether a transformation program is equivalent to some non-recursive
transformation program is almost certainly undecidable.



14 DATABASE TRANSFORMATIONS 111

Infinite Unfolding Sequences

Our mechanism for detecting recursive transformation programs works by making use of semi-
normal forms and the presence of atoms corresponding to each point at which values are poten-
tially being created. For each atom a record is kept of the last transformation clause to have
“touched” that atom during the transformation process. The idea is that, in an infinite series of
unfoldings, eventually it will be necessary to do an unfolding on a clause such that every atom
involved in the unfolding has already been touched by the clause. When this happens recursion
is detected and the transformation program is rejected.

An unfolding sequence for a transformation program Tr consists of a (possibly infinite) se-
quence of clauses, Ξ0,∆0,Ξ1,∆1, . . . ,Ξi,∆i, . . . and a sequence of unifiers, U0,U1, . . . ,Ui, . . .,
such that

1. ∆i ∈ Tr for i = 0, 1, 2, . . ., and

2. Ξi+1 ∈ Unfold(Ξi,∆i,Ui) for i = 0, 1, 2, . . ..

An unfolding sequence consisting of clauses Ξ0,∆0,Ξ1, . . . ,Ξi,∆i, . . . and unifiers U0,U1, . . . ,
Ui, . . . is said to be valid iff Ξ is unfoldable on ∆i,Ui
A decoration of an unfolding sequence is a sequence of maps, δ0, δ1, . . . , δi, . . ., such that

1. δi : Φi → IN for i = 0, 1, 2, . . .,

2. δ0(φ) = 0 for each φ ∈ Φ0, and

3. δi+1(φ) =


δi(φ′) if φ′ ∈ Φi, φ = Ui(φ′)

and Ui(φ′) 6∈ Φ′
i

i+ 1 otherwise
for i = 0, 1, 2, . . .

So the decoration of an unfolding sequence represents the number of the last unfolding involved
in generating an atom.

Proposition 14.7: Suppose Ξ0,∆0,Ξ1,∆1, . . ., U0,U1, . . . is valid infinite unfolding sequence for
Tr. Then there is a k such that, for every φ ∈ Caught(Ξk,∆k,Uk) there is an i ≤ δk(φ) such
that ∆i = ∆k.

This proposition means that, in an infinite unfolding sequence, eventually we will get to an
unfolding where, for each atom being removed by the unfolding, the transformation clause of
the unfolding has already been used in generating that atom.

In order to prove this we will first need some additional notation and a lemma.

Suppose Ξ0,∆0,Ξ1,∆1, . . . and U0,U1, . . . form a valid infinite unfolding sequence, and Ξi ≡
(Ψi ⇐= Φi), ∆i ≡ (Ψ′

i ⇐= Φ′
i) for i = 0, 1, . . .. For any i and j > i, we define the partial



112 PART III. THE WOL LANGUAGE

function U ji : Var(Φi)
∼→ Var(Ψ′

j ∪ Φ′
j) by

U i+1
i ≡ Ui

U j+1
i ≡ Uj ◦ U ji for j > i

Lemma 14.8: Suppose Ξ0,∆0,Ξ1,∆1, . . . and U0,U1, . . . form an infinite unfolding sequence, with
Ξi ≡ (Ψi ⇐= Φi) for i = 0, 1, . . .. Then for each i there is a k > i such that, for any j ≥ k, if
φ ∈ Φi is such that U ji (φ) ∈ Caught(Ξj ,∆j ,Uj) then δj(U ji (φ)) 6= δi(φ).

Proof: Suppose there is no such k. Then there are infinitely many js, j > i, such that
U ji (φ) ∈ Caught(Ξj ,∆j ,Uj) and δj(U ji (φ)) = δi(φ) for some φ ∈ Φi.

But if U ji (φ) ∈ Caught(Ξj ,∆j ,Uj) then U j+1
i (φ) 6∈ Φj+1. Hence if U li (φ) ∈ Caught(Ξl,∆l,Ul) for

some l > j, then δl(U li (φ)) > j.

Since Φi is finite, there can be at most finitely many j’s such that U j−1
i (φ) ∈ Caught(Ξj ,∆j ,Uj)

and δj(U j−1
i (φ)) = δi(φ) for some φ ∈ Φ. Hence result.

Proof of proposition 14.7: Suppose the proposition is not true. Then there is a transformation
clause ∆ ∈ Tr such that ∆ occurs infinitely often in the unfolding sequence, and for any i such
that ∆i = ∆ there is a φ ∈ Caught(Ξi,∆i,Ui) such that, for any j < δi(φ) ∆j 6= ∆.

Let i be the first such that ∆i = ∆. Then by lemma 14.8, there is a k such that for all j > k
and any φ ∈ Caught(Ξj ,∆j ,Uj), δj(φ) > i. Then since there are infinitely many occurrences
of ∆ in our unfolding sequence, we can pick i such that i > k and ∆i = ∆, contradicting our
original hypothesis.

This proposition leads to a fine definition of recursion, for which, as we will see, tests can be
built into out normalization algorithm.

Definition 14.17: Suppose Tr is a transformation program from SSrc to STgt. Then Tr is said to
be recursive iff there is an unfolding sequence for Tr, Ξ0,∆0, . . . ,Ξk,∆k, U0, . . . ,Uk with deco-
ration δ0, . . . , δk, such that Ξ0 is a description clause for STgt, and for any φ ∈ Caught(Ξk,∆k,Uk)
there is an i ≤ δk(φ) with ∆i = ∆k.

Note that, while a transformation program which admits an infinite sequence of unfoldings,
starting from a description clause, must be recursive, it does not follow that any recursive
transformation program must admit such a sequence of unfoldings.

The following proposition tells us that a complete, non-recursive transformation program can be
unfolded into an equivalent normal form program. Note that the result holds only for programs
consisting entirely of transformation clauses. If a transformation program included constraints
then the result would not necessarily hold, and would have to be checked for the individual
program. Also we require that the underlying base domains are infinite.

Proposition 14.9: Given any non-recursive transformation program Tr from SSrc to STgt con-
taining only transformation clauses, if Tr is complete then there is an equivalent transformation



14 DATABASE TRANSFORMATIONS 113

program Tr′ such that Tr′ is in normal form. Further there is an algorithm which will compute
such a Tr′ if Tr is complete, or terminate reporting that Tr is not complete otherwise.

Such a Tr′ can be computed by taking the maximal unfolding sequences of the description
clauses for STgt with clauses from Tr.

We will give the proof for the case when STgt is a simply-keyed, non-nested schema as described
in section 14.5.

The proof uses an adaption of standard techniques such as Herbrand universes and models.
However it is quite long and will proceed in a series of stages which will comprise the remainder
of this section, and will require a number of intermediary definitions. In order to simplify
the presentation we will take some notational liberties, particularly concerning the distinctions
between the values of an instance, syntactic terms and the terms of the algebra which form
a Herbrand universe. We will also assume an implicit ordering on the set of all variables, so
that the variables of a particular clause or set of atoms will be considered to form an ordered
sequence or tuple rather than a set.

Herbrand Universes and Models

We will assume a source schema SSrc, a target schema STgt with classes CSrc and CTgt respectively,
and a non-recursive transformation program Tr.

For each transformation clause ∆ ∈ Tr, ∆ ≡ (Φ ⇐= Ψ), and every variable Y ∈ Var(Φ)\Var(Ψ),
we assume a function symbol fY∆ . If Var(Ψ) = X1, . . . , Xk, where ∆ ` Xi : τi for i = 1, . . . , k,
and ∆ ` Y : τ , then we say that fY∆ has domain type (τ1, . . . , τk) and range type τ , and will use
the notation fY∆ : (τ1, . . . , τk) → τ .

Definition 14.18: A Herbrand universe or H-universe is a family of sets H(τ), τ ∈ Types(C)
such that, if ui ∈ H(τi) for i = 1, . . . , k, and fY∆ : (τ1, . . . , τk) → τ , then fY∆ (u1, . . . , uk) ∈ H(τ).
We will also sometimes overload notation and write H for the set

⋃
τ∈Types(C)H(τ).

We define Symb to be the set

Symb ≡ {!, ∈̇} ∪ {MkC |C ∈ C} ∪ {πa|a ∈ A} ∪ {insa|a ∈ A}

We also assume a set of constant symbols Const which include a symbol cb corresponding to
each element c of the domain of base type b.

An H-model, (M,A), over an H-universe H consists of a family of sets M(τ) ⊆ H(τ), τ ∈
Types, and a set A where

A ⊆ (M× Symb×M) ∪ (M× Const)

(where M denotes
⋃
τ∈Types(C) M(τ)), and, in addition, M and A satisfy the following conditions:

1. If fY∆ (u1, . . . , un) ∈ M then ui ∈ M for i = 1, . . . , n,



114 PART III. THE WOL LANGUAGE

2. If (u, πai , v) ∈ A then u ∈ M((a1 : τ1, . . . , ak : τk)) and v ∈ M(τi) for some type (a1 :
τ1, . . . , ak : τk) ∈ Types(C).

3. If (u, insai , v) ∈ A then v ∈ M(〈|a1 : τ1, . . . , ak : τk|〉) and v ∈ M(τi) for some type
〈|a1 : τ1, . . . , ak : τk|〉 ∈ Types(C).

4. If (u, !, v) ∈ A then u ∈ M(τC) and v ∈ M(C) for some C ∈ C.

5. If (u,MkC , v) ∈ A then u ∈ M(C) and v ∈ M(κC).

6. If (u, ∈̇, v) ∈ A then u ∈ M(τ) and v ∈ M({τ}) for some type τ .

7. If (u, cb) ∈ A then u ∈ M(b).

So H-universes and H-models provide us with a means of representing the syntactic atoms and
objects implied by a transformation program. In order to make use of them we will first have to
construct an H-model representing precisely the values and objects of a source database instance,
and an H-universe representing the objects that can potentially be built out of that instance.
To do this we must first extract the values occurring in an instance.

Suppose I = (σC ,VC) is an instance. We define the family of sets ValsI(τ) ⊆ [[τ ]]I, τ ∈ Types(C),
to be the smallest sets such that

1. ValsI(C) = σC for each C ∈ C;

2. if u ∈ ValsI(C) for some C ∈ C, then VC(u) ∈ ValsI(τC);

3. if u ∈ ValsI((a1 : τ1, . . . , ak : τk)) for some record type (a1 : τ1, . . . , ak : τk), then u(ai) ∈
ValsI(τi) for i = 1, . . . , k;

4. if (ai, u) ∈ ValsI(〈|a1 : τ1, . . . , ak : τk|〉) for some variant type 〈|a1 : τ1, . . . , ak : τk|〉, then
u ∈ ValsI(τi); and

5. if u ∈ ValsI({τ}) for some type τ , and v ∈ u then v ∈ ValsI(τ).

Given an instance I we let H(I) denote the smallest H-universe such that ValsI(τ) ⊆ H(τ) for
every type τ .

We define Mod(I) to be the smallest H-model over H(I), (M,A), such that

1. ValsI(τ) ⊆ M(τ) for every type τ ;

2. if u ∈ σC and v = VC(u) then (v, !, u) ∈ A;

3. if u ∈ σC and v = KC(u) then (u,MkC , v) ∈ A;

4. if u ∈ ValsI((a1 : τ1, . . . , ak : τk)) and v = u(ai) then (v, πai , u) ∈ A;



14 DATABASE TRANSFORMATIONS 115

5. if u ∈ ValsI(〈|a1 : τ1, . . . , ak : τk|〉) and u = (ai, v) then (u, insai , v) ∈ A; and

6. if u ∈ ValsI({t}) and v ∈ u then (v, ∈̇, u) ∈ A; and

7. if c ∈ ValsI(b) then (c, cb) ∈ A.

An interpretation of an H-model (M,A) in an instance I is a family of mappings Iτ : M(τ) →
ValsI(τ) such that

1. if u ∈ M(C) and (v, !, u) ∈ A then IτC (v) = VC(IC(u));

2. if u ∈ M(C) and (u,MkC , v) ∈ A then IτC (v) = KC(IC(u));

3. if u ∈ M((a1 : τ1, . . . , ak : τk)) and (v, πai , u) ∈ A then Iτi(v) = (I(a1:τ1,...,ak:τk)(u))(ai);

4. if u ∈ M(〈|a1 : τ1, . . . , ak : τk|〉) and (u, insai , v) ∈ A then I〈|a1:τ1,...,ak:τk|〉(u) = (ai, Iτi(v));

5. if u ∈ M({τ}) and (v, ∈̇, u) ∈ A then Iτ (v) ∈ I{τ}(u); and

6. if (u, cb) ∈ A then Ib(u) = c.

Interpretations provide a means of connecting H-models to the instances they represent.

Note that, for any instance I, there is a unique interpretation I of the H-model Mod(I) in I
such that Iτ (u) = u for each u ∈ ValsI(τ).

Skolemization of Clauses

We introduce the process of Skolemization in order to remove existential variables from our
clauses and replace them with applications of Skolem functions. The way in which these functions
are applied within a term will show how the term was created and the object it represents arose.

First we must extend definition 13.1 to include terms build using Skolem functions:

P ::= . . .

| fY∆ (P1, . . . , Pk)

and add the following typing rule to definition 13.2:

Γ ` P1 : τ1 . . . Γ ` Pk : τk
Γ ` fY∆ (P1, . . . , Pk) : τ

where fY∆ : (τ1, . . . , τk) → τ

Suppose ∆ ∈ Tr is a transformation clause, ∆ ≡ (Φ ⇐= Ψ), and Var(Ψ) = X1, . . . , Xk. For
any term P occurring in ∆ we define P̂ to be the term formed by replacing any occurrence of a
variable Y ∈ Var(Φ) \Var(Ψ) in P with the term fY∆ (X1, . . . , Xk).



116 PART III. THE WOL LANGUAGE

We define ∆̂ to be the clause formed by replacing every term P occurring in ∆, such that P does
not occur within some larger term, with P̂ . Consequently ∆̂ contains no existential variables.

We say a clause ∆ is Skolemized if it contains no existential variables, though it may contain
universal variables and applications of Skolem functions. We say a term P occurring in ∆ is a
variable term iff either P ≡ X for some variable X, or P ≡ fY∆ (Q1, . . . , Qk) where Q1, . . . , Qk
are variable terms.

Generating H-models from Transformation Programs and Instances

Next we need to define how we can apply such Skolemized clauses to an H-model.

Suppose (M,A) is an H-model. We define Eq(A) to be the smallest equivalence relation on M
such that

1. if (u, cb) ∈ A and (v, cb) ∈ A for some cb ∈ Const, then (u, v) ∈ Eq(A);

2. if (u, v) ∈ Eq(A) and (u′, πa, u) ∈ A and (v′, πa, v) ∈ A then (u′, v′) ∈ Eq(A);

3. if u, v ∈ M((a1 : τ1, . . . , ak : τk)) and there exist u1, . . . , uk and v1, . . . , vk such that
(ui, πai , u) ∈ A and (vi, πai , v) ∈ A and (ui, vi) ∈ Eq(A) for i = 1, . . . , k, then (u, v) ∈
Eq(A).

4. if (u′, insa, u) ∈ A and (v′, insa, v) ∈ A then (u′, v′) ∈ Eq(A) iff (u, v) ∈ Eq(A);

5. if (u′,MkC , u) ∈ A and (v′,MkC , v) ∈ A then (u′, v′) ∈ Eq(A) iff (u, v) ∈ Eq(A); and

6. if (u′, !, u) ∈ A and (v′, !, v) ∈ A and (u, v) ∈ Eq(A) then (u′, v′) ∈ Eq(A).

Lemma 14.10: If (M,A) is an H-model, I and interpretation of (M,A) in some instance I, and
u, v ∈ M(τ) are such that (u, v) ∈ Eq(A), then Iτ (u) = Iτ (v).

Proof: Follows by induction on the definition of Eq(A).

Suppose ∆ ≡ (Φ ⇐= Ψ) is a transformation clause with Var(Ψ) = X1, . . . , Xk and ∆ ` Xi : τi
for i = 1, . . . , k. An H-environment for ∆ in an H-model (M,A) is a tuple (u1, . . . , uk) such
that ui ∈ M(τi) for i = 1 . . . , k.

If P is a variable term occurring in a Skolemized clause ∆ such that ∆ ` P : τ , and ξ is an
H-environment for ∆, say ξ = (u1, . . . , uk), then we define ξ(P ) ∈ H(τ) by

1. if P ≡ Xi then ξ(P ) ≡ ui; and

2. if P ≡ fY∆ (Q1, . . . , Qk) then ξ(P ) ≡ fY∆ (ξ(Q1), . . . , ξ(Qk)).

Suppose (M,A) is an H-model and ξ an H-environment for a clause ∆. (M,A) and ξ are said
to satisfy an atom ψ occurring in ∆ iff



14 DATABASE TRANSFORMATIONS 117

1. ψ ≡ (P =̇!Q) and there exist u, v ∈ M such that (u, ξ(P )) ∈ Eq(A) and (v, ξ(Q)) ∈ Eq(A)
and (u, !, v) ∈ A; or

2. ψ ≡ (P =̇MkCQ) and there exist u, v ∈ M such that (u, ξ(P )) ∈ Eq(A) and (v, ξ(Q)) ∈
Eq(A) and (u,MkC , v) ∈ A; or

3. ψ ≡ (P =̇πaQ) and there exist u, v ∈ M such that (u, ξ(P )) ∈ Eq(A) and (v, ξ(Q)) ∈ Eq(A)
and (u, πa, v) ∈ A; or

4. ψ ≡ (P =̇insaQ) and there exist u, v ∈ M such that (u, ξ(P )) ∈ Eq(A) and (v, ξ(Q)) ∈
Eq(A) and (u, insa, v) ∈ A; or

5. ψ ≡ (P ∈̇Q) and there exist u, v ∈ M such that (u, ξ(P )) ∈ Eq(A) and (v, ξ(Q)) ∈ Eq(A)
and (u, ∈̇, v) ∈ A; or

6. ψ ≡ (P =̇cb) and there exists u ∈ M such that (u, ξ(P )) ∈ Eq(A) and (u, cb) ∈ A; or

7. ψ ≡ (P ˙6=Q) and (ξ(P ), ξ(Q)) 6∈ Eq(A); or

8. ψ ≡ (P ∈̇Q) and there do not exist u, v ∈ M such that (ξ(P ), u) ∈ Eq(A), (ξ(Q), v) ∈
Eq(A) and (u,∈, v) ∈ A.

If ξ is an H-environment for a clause ∆ and ψ is a positive snf atom occurring in ∆, then we
define ξ(ψ) by

1. if ψ ≡ (P =̇!Q) then ξ(ψ) ≡ (ξ(P ), !, ξ(Q)); and

2. if ψ ≡ (P =̇MkCQ) then ξ(ψ) ≡ (ξ(P ),MkC , ξ(Q)); and

3. if ψ ≡ (P =̇πaQ) then ξ(ψ) ≡ (ξ(P ), πa, ξ(Q)); and

4. if ψ ≡ (P =̇insaQ) then ξ(ψ) ≡ (ξ(P ), insa, ξ(Q)); and

5. if ψ ≡ (P ∈̇Q) then ξ(ψ) ≡ (ξ(P ), ∈̇, ξ(Q)); and

6. if ψ ≡ (P =̇cb) then ξ(ψ) ≡ (ξ(P ), cb).

Given a transformation program Tr and an H-model (M,A) for Tr, we define Tr(M,A) to be
the smallest H-model (M′,A′) such that

1. For each type τ , M(τ) ⊆ M′(τ); and

2. A ⊆ A′; and

3. for any transformation clause ∆ ∈ Tr, ∆ ≡ (Φ ⇐= Ψ), and H-environment ξ for ∆, if ξ
and (M,A) satisfy ψ for each ψ ∈ Ψ, then ξ(φ) ∈ A′ for each φ ∈ Φ.



118 PART III. THE WOL LANGUAGE

Given an instance ISrc of SSrc we can now form a series of H-models, (Mi,Ai), i ∈ IN, defined
by

(M0,A0) ≡ Mod(ISrc)
(Mi+1,Ai+1) ≡ Tr(Mi,Ai)

We can also define the H-model (M∞,A∞) such that M∞(τ) =
⋃∞
i=0 Mi(τ) for each type τ ,

and A∞ =
⋃∞
i=0 Ai. It is easy to check that (M∞,A∞) is indeed an H-model.

Lemma 14.11: Suppose ISrc is an instance of SSrc, (M∞,A∞) is the H-model built from ISrc as
described above, and ITgt is a Tr-transformation of ISrc: that is ITgt is an instance of STgt such
that the instance I = ISrc∪ITgt satisfies each clause in Tr. Then there is a unique interpretation
I of (M∞,A∞) in I such that Iτ (u) = u for all u ∈ ValsISrc

(τ).

Proof: We show that, for every i ∈ IN, there is a unique interpretation Ii of (Mi,Ai) in I
satisfying these properties.

We already have this result for (M0,A0). Suppose we have such an Ii for (Mi,Ai). For each
u ∈ Mi+1(τ) if u ∈ Mi(τ) then we must have Ii+1

τ (u) = Iiτ (u) by uniqueness of Ii since Ii+1

restricted to Mi is an interpretation from (Mi,Ai) to I.

Suppose u ∈ Mi+1(t) \ Mi(τ). Then there is a transformation clause ∆ ≡ (Φ ⇐= Ψ) in Tr
and an H-environment ξ for ∆ in (Mi,Ai) such that ξ satisfies each atom ψ ∈ Ψ and there is
a variable Y occurring in Var(Φ) \ Var(Ψ) such that ξ(̂(Y )) = u. Further ξ(φ̂) ∈ Ai+1 for each
φ ∈ Φ.

Consider the I-environment ρ with dom(ρ) = Var(Ψ) defined by ρ(X) ≡ Iiτ (ξ(X)) for X ∈
Var(Ψ) where ∆ ` X : τ . Since Ii is an interpretation of (Mi,Ai) in I we have [[ψ]]Iρ = T
for each ψ ∈ Ψ. Hence there is a unique extension of ρ to Var(Φ) ∪ Var(Ψ), ρ′ say, such that
[[φ]]Iρ′ = T for all ψ ∈ Ψ. Then we can define Ii+1(u) ≡ ρ′(Y ).

It is clear that Ii+1 is an interpretation of (Mi+1,Ai+1) in I. Finally we can define I by
Iτ (u) ≡ Ijτ (u) where u ∈ Mj .

Lemma 14.12: Suppose that ISrc is an instance of SSrc and ITgt an instance of STgt, and I is
an interpretation of (M∞,A∞) in I (I = ISrc ∪ ITgt), such that for any transformation clause
∆ ∈ Tr, ∆ ≡ (Ψ ⇐= Φ), and I-environment ρ, if [[Φ]]Iρ = T then there exists an H-environment
for ∆ in (M∞,A∞), ξ, such that I(ξ(X)) = ρ(X) for each X ∈ Var(Φ), ξ satisfies each atom
φ ∈ Φ. Then ITgt is a Tr-transformation of ISrc.

Proof: Suppose ITgt is an instance and I an interpretation, as described in the lemma. Suppose
∆ ≡ (Ψ ⇐= Φ) is a transformation clause and ρ an environment such that [[Φ]]Iρ = T. Suppose
Var(Φ) = X1, . . . , Xk, and ξ = (u1, . . . , uk) is an H-environment such that I(ui) = ρ(Xi) for
i = 1, . . . , k, and ξ satisfies φ for each φ ∈ Φ. Then ξ(ψ) ∈ A∞ for each ψ ∈ Ψ. Hence if we
take ρ′ to be the extension of ρ given by ρ′(Y ) = I(fY∆ (u1, . . . , uk)) for Y ∈ Var(Ψ) \ Var(Φ),
then [[ψ]]Iρ′ = T for each ψ ∈ Ψ. Hence I satisfies ∆.



14 DATABASE TRANSFORMATIONS 119

Complete H-Models

An H-model, (M,A) is said to be complete iff

1. if u ∈ M((a1 : τ1, . . . , ak : τk)) then for each i ∈ 1, . . . , k there exists a v ∈ M(τi) such that
(v, πai , u) ∈ A; and

2. if u ∈ M(〈|a1 : τ1, . . . , ak : τk|〉) then for some i ∈ 1, . . . , k there is a v ∈ M(τi) such that
(u, insai , v) ∈ A; and

3. if u ∈ M(C) then there is a v ∈ M(κC) such that (u,MkC , v) ∈ A, and there is a
v′inM(τC) such that (v, !, u) ∈ A; and

4. if u ∈ M(b) for some base type b, then there exists a cb ∈ Consts such that (u, cb) ∈ A.

Lemma 14.13: If (M,A) is a complete H-model and I is an interpretation of (M,A) in an
instance I, then for any u, v ∈ M(τ), if Iτ (u) = Iτ (v) then (u, v) ∈ Eq(A).

Proof: Follows by induction on types and paths in the key-type dependency graph.

Lemma 14.14: If Tr is a complete transformation program then the H-model (M∞,A∞) formed
as described above is complete.

Proof: It is enough to show that, if (M∞,A∞) is not complete, and ITgt is a target instance
such that I = ISrc∪ITgt is a minimal instance satisfying Tr, then there is another instance I ′Tgt

such that I ′ = ISrc ∪ I ′Tgt also satisfies Tr and I ′ is not isomorphic to I.

Since (M∞,A∞) is not complete, we can pick a uM∞ such that one of the following conditions
holds:

1. u ∈ M∞(a1 : τ1, . . . , ak : τk) and for some i ∈ 1, . . . , k there is no v ∈ M∞(τk) such that
(v, πai , u) ∈ A∞; or

2. u ∈ M∞(〈|a1 : τ1, . . . , ak : τk|〉) and there is no i ∈ 1, . . . , k and v ∈ M∞(τi) such that
(u, insai , v) ∈ A∞; or

3. u ∈ M∞(b) and there is no cb ∈ Const such that (u, cb) ∈ A∞.

Suppose I is the unique interpretation of (M∞,A∞) in I described in lemma 14.11. Then we
can form I ′ by replacing some base value occurring in I(u) (or I(u) itself if u ∈ M∞(b)) with a
new base value not occurring in I or in any of the clauses in Tr.

Lemma 14.15: Suppose (M∞,A∞) is a complete H-model for Tr, ITgt is an instance of STgt,
and I an interpretation of (M∞,A∞) in I, such that, for each type τ , and for each u ∈ ValsI(τ)
there is a v ∈ M(τ) with Iτ (v) = u, and for each u ∈ ValsI({τ}) and v ∈ u there is a



120 PART III. THE WOL LANGUAGE

u′ ∈ M({τ}) and ν ′ ∈ M(τ) such that I{τ}(u′) = u, Iτ (v′) = v and (v′, ∈̇, u′) ∈ A. Then ITgt is
a Tr-transformation of ISrc.

Proof: It is enough to prove that the such an instance satisfies the conditions of lemma 14.12.

Suppose that ∆ = (Ψ ⇐= Φ) is a transformation clause and ρ an I-environment such that
[[Φ]]Iρ = T. Suppose Var(Φ) = X1, . . . , Xk. We can choose u1, . . . , uk ∈ M∞ such that I(ui) =
ρ(Xi), for i = 1, . . . , k, and let ξ = (u1, . . . , uk). We will show that, for each φ ∈ Φ, ξ satisfies φ
in (M∞,A∞).

Suppose φ ≡ (Xi
˙6=Xj). Then, since ∆ is a transformation clause, Xi and Xj are source terms.

Hence ρ(Xi) ∈ Vals(ISrc) and ρ(Xj) ∈ Vals(ISrc). Since I(ui) = ρ(Xi) and I(uj) = ρ(Xj) it
follows from lemma 14.10 that ξ satisfies φ. Similarly if φ ≡ (Xi

˙6∈Xj) then ξ satisfies φ.

Suppose φ ≡ (Xi
˙inXj). Then the result follows from our assumptions about I.

Suppose φ ≡ (Xi=̇db). Then ui ∈ M∞(b). Hence, since (M∞,A∞) is complete, there is a
constant cb such that (ui, cb) ∈ A∞. Hence, since I is an interpretation, Ib(ui) = c. Hence
cb ≡ db, and (M∞,A∞) satisfies φ.

Suppose φ ≡ (Xi=̇πal
Xj), and ∆ ` Xj : (a1 : τ1, . . . , an : τn). Then uj ∈ M∞(a1 : τ1, . . . , an :

τn), and, since (M∞,A∞) is complete, there exists a v ∈ M∞(τl) such that (v, πal
, uj) ∈ A∞.

Hence Iτl(v) = Iτl(ui). Hence, by lemma 14.13, (v, u) ∈ Eq(A∞). Hence ξ satisfies φ.

The remaining cases are similar.

Note, in particular, that lemma 14.15 tells us that, if (M∞,A∞) is complete then an instance
satisfying the conditions of this lemma is a unique (up to isomorphism) minimal model satisfying
Tr, and hence Tr is complete. Consequently lemmas 14.14 and lemma:compl-inst-to-compl-
hmod combine to prove that a Tr is complete iff (M∞,A∞) is complete.

It remains to show that there is a normal-form transformation program formed by unfolding
clauses from Tr which generates (M∞,A∞) in a single step.

Unfolding Sequences of Skolemized Clauses

We must first extend our definition of unifiers (definition 14.14) and unfoldings to deal with
Skolemized clauses.

Suppose Ξ ≡ (Ψt ⇐= Φt) and ∆ ≡ (Ψu ⇐= Φu) are Skolemized clauses. A unifier from ∆ to Ξ
is a partial mapping from the variable terms of Φt to the variable terms of Φu ∪Ψu.

We can define the set of clauses Unfold(Ξ,∆,U) and unfolding sequences in an analogous way
to in section 14.6.

Lemma 14.16: For any q ∈ A∞ either q ∈ A0 or there is an unfolding sequence Ξ0,∆1,Ξ1, . . . ,
∆N ,ΞN , and U1. . . . ,UN , where ΞN ≡ (Ψ ⇐= Φ), such that Ξ0 ∈ Tr, ∆i ∈ Tr for i = 1, . . . , N ,
and an ISrc-environment ρ, such that [[Φ]]ISrcρ = T, and s = ξ(ψ) for some ψ ∈ Ψ, where



14 DATABASE TRANSFORMATIONS 121

Var(Φ) = X1, . . . , Xk and ξ is the H-environment (ρ(X1), . . . , ρ(Xk)).

Proof: We will show by induction on i that, for each q ∈ Ai there is an unfolding sequence as
described in the lemma. For i = 0 the result is trivial.

Suppose i ≥ 0 and we have the result for i, and that q ∈ Ai+1\Ai. Then there is a transformation
clause Ξ ∈ Tr, Ξ ≡ (Ψ ⇐= Φ), and an H-environment ξ for (Mi,Ai) such that ξ satisfies each
φ ∈ Φ. and s = ξ(ψ) for some ψ ∈ Ψ.

We need to show that, for any atom φ and H-environment ξ such that ξ satisfies φ in (Mi,Ai),
there is a finite unfolding sequence which generates ξ(φ). We will show this for the case where
φ ≡ (Xi=̇cb). The other cases are identical in principle (though slightly more complicated to
present because of involving two variables).

Suppose ξ = (u1, . . . , uk), φ ≡ (Xi=̇cb) and ξ satisfies φ in (Mi,Ai). Then there is a v ∈ Mi(b)
such that (v, ui) ∈ Eq(Ai) and (v, cb) ∈ Ai. Hence there is a finite set A′ ⊆ Ai such that
(v, ui) ∈ Eq(A′). Assume A′ is a minimal such set, and let A′′ = A′ \ A0. Suppose A′′ =
{q1, . . . , ql}. Then for j = 1, . . . , k there exist unfolding sequences Ξj0,∆

j
1,Ξ

j
1, . . . ,∆

j
nj ,Ξ

j
nj and

U j1 , . . . ,U
j
nj , where Ξj0 ∈ Tr and ∆j

i ∈ Tr for i = 1, . . . , nj , and H-environments ξj for Ξj
nj , such

that Ξj
nj ≡ (Ψj ⇐= Φj) ξj satisfies φ′ in (M0,A0) for each φ′ ∈ Φj , and ξψ

′
= qj for some

ψ′ ∈ Ψj .

Also there is an unfolding sequence, Ξ′0,∆
′
1,Ξ

′
1, . . . ,∆

′
n,Ξ

′
n and U ′1, . . . ,U ′nj , and an H-environ-

ment ξ′ such that Ξ′n ≡ (Ψ′ ⇐= Φ′) and, for each φ′ ∈ Φ′, ξ′ satisfies φ′ in (M0,A0) and
ξ′(ψ′) = (v, cb) for some ψ′ ∈ Ψ′.

Hence we can form an unfolding sequence with clauses Ξ′0,∆
′
1, . . . ,∆

′
n,Ξ

′
n,Ξ

1
0,Θ

1
0,∆

1
1, . . . ,∆

1
n1 ,

Θ1
n1 , . . . ,Ξl0,Θ

l
0,∆

l
1, . . . ,∆

l
nl ,Θl

nl and unifiers U ′1, . . . ,U ′n,U ′10 ,U ′11 , . . . , U ′l
0 ,U ′l1 , . . . ,U ′lnl , and an H-

environment ξ′′ such that, if Θl
nl ≡ (Ψ′′ ⇐= Φ′′) then ξ′′ satisfies φ′′ in (M0,A0) for each

φ′′ ∈ Φ′′, and ξ′′(ψ′′) = (ui, cb) for some ψ′′ ∈ Ψ′′.

Returning to our original clause Ξ ≡ (Ψ ⇐= Φ), suppose Φ = {φ1, . . . , φm}. Then, using
an argument similar to above, for each φj we can find an unfolding sequence with clauses
Ξj0,∆

j
1,Ξ

j
1, . . . ,∆

j
nj ,Ξ

j
nj and unifiers U j1 , . . . ,U

j
nj such that Ξj0 ∈ Tr and ∆j

i ∈ Tr for i = 1, . . . , nj ,
and there is an H-environment ξ′ such that, if Ξj

nj ≡ (Ψ′ ⇐= Φ′), then ξ′ satisfies φ′ in (M0,A0)
for each φ′ ∈ Φ′, and ξ′(ψ′) = ξ(φj) for some ψ′ ∈ Ψ′.

Hence we can form an unfolding sequence with clauses Ξ,Ξ1
0,Θ

1
0,∆

1
1,Θ

1
1, . . . ,∆

1
n1 ,Θ1

n1 ,Ξ2
0,Θ

2
0,

. . . ,Ξm0 ,Θ
m
0 ,∆

m
1 ,Θ

m
1 , . . . ,∆

m
nm ,Θm

nm and unifiers U ′10 , . . . ,U ′1n1 , . . . ,U ′m0 , . . . ,U ′mnm , and an H-envi-
ronment ξ′′ such that, if Θm

nm ≡ (Ψ′′ ⇐= Φ′′) then ξ′′ satisfies φ′′ in (M0,A0) for φ′′ ∈ Φ′′, and
ξ′′(ψ′′) = q for some ψ′′ ∈ Ψ′′.

Finally we must show that, for each q ∈ A∞ \A0 there is an unfolding from a description clause
which generates q.

If q ∈ A∞\A0 then there is a clause ∆ ∈ Tr, ∆ ≡ (Ψ ⇐= Φ), and an H-environment ξ such that
ξ and (M∞,A∞) satisfy each φ ∈ Φ and ξ(ψ) = q for some ψ ∈ Ψ. Let Θ be a minimal set of
atoms such that, if P is a variable term in ψ and ∆ ` P : (C, µ) then NavP(C,µ) ⊆ Θ and Θ ⇐= Θ



122 PART III. THE WOL LANGUAGE

is a description clause. Then since (M∞,A∞) is complete, we can find an H-environment ξ′ such
that ξ′(θ) ∈ A∞ for each θ ∈ Θ and ξ′(θ′) = ξ(ψ) for some θ′ ∈ Θ. Hence, for each θ ∈ Θ, we
can find an unfolding sequence and H-environment that generates ξ′(θ) from (M0,A0). Using
the techniques of the proof of lemma 14.16, we can combine these unfolding sequences to get a
sequence starting with Θ ⇐= Θ and ending in a normal-form clause (that is with only source
terms in the body), which generates q.

This concludes our proof of proposition 14.9.

15 Transformations of Alternative Collection Types

The type system we defined in 7.1 supports set types as well as variants, records and class
types. However many data-models support other kinds of collection types, in particular bags, in
which elements have multiplicity, and lists, in which elements have both multiplicity and order.
Sets, bags and lists, and possibly other kinds of collection type, may be viewed as being based
around the same or similar constructors, but with differing semantics. This idea is exemplified
in [10] where programming languages based on structural induction are introduced for these
three collection types.

Consequently the question arises as to how we can adapt the language WOL, and the associated
programming techniques, for defining transformations between databases involving bags and
lists. We will concentrate on solving this problem for lists, since a solution for lists can then be
generalized for bags (and, in fact, sets) via the appropriate coercions.

The problem is that WOL is a declarative language, in which there is no implicit concept of
order of evaluation or assignment. The traditional presentation of lists involves the constructors
cons and nil, and lists are built using ordered sequences of applications of these constructors.
As it stands, WOL uses a single predicate ∈̇ in order to indicate inclusion in a collection type,
but does not have any means of indicating the order or multiplicity of elements in a collection.
The cons, nil presentation of lists is not suitable for inclusion in WOL because it requires some
kind of recursion in order to construct lists or arbitrary length.

For example suppose we have a target class Person, with associated type τPerson ≡ (name :
str, children : [Person]). Here [τ ] is used the type of lists of type τ . Suppose our source contains
a table Parents of type [(pname : str, cname : str)]. We could write a clause

X = MkPerson(N), X.name = N, MkPerson(C) ∈ X.children

⇐= P ∈ Parents, P.pname = N, P.cname = C

Then we would like to have the order of the list of children of a particular person in the Person
class coincide with the order of the corresponding children in the Parents table. So if our Parents
list was



15 TRANSFORMATIONS OF ALTERNATIVE COLLECTION TYPES 123

Parents ≡ [(pname = “Susan”, cname = “Jeremy”),
(pname = “Susan”, cname = “Chris”),
(pname = “Val”, cname = “Alexander”),
(pname = “Val”, cname = “Nicholas”),
(pname = “Carl”, cname = “George”),
(pname = “Victor”, cname = “Athalia”),
(pname = “Victor”, cname = “Mirit”)]

then we would like our class Person to have objects

σPerson ≡ {Susan, Jeremy,Chris,Val,Alexander,Nicholas,

Carl,George,Victor,Athalia,Mirit}

with associated values

VPerson(Susan) = (name = “Susan”, children = [Jeremy,Chris])
VPerson(Val) = (name = “Val”, children = [Alexander,Nicholas])
VPerson(Carl) = (name = “Carl”, children = [George])

VPerson(Victor) = (name = “Victor”, children = [Athalia,Mirit])
VPerson(Jeremy) = (name = “Jeremy”, children = [])
VPerson(Chris) = (name = “Chris”, children = [])

VPerson(Alexander) = (name = “Alexander”, children = [])
VPerson(Nicholas) = (name = “Nicholas”, children = [])
VPerson(George) = (name = “George”, children = [])
VPerson(Athalia) = (name = “Athalia”, children = [])
VPerson(Mirit) = (name = “Mirit”, children = [])

.

15.1 An alternative representation for lists

Since we are avoiding recursion and the cons, nil presentation of lists in our language, we will
present an alternative construction for lists which relies on the idea of assigning a precedence to
each element of a list, representing its position.

We will assume a linearly ordered set (L, <). The particular linear order we choose does not
matter here, though later we’ll be settling on the set of strings of natural numbers ordered
lexicographically.

Definition 15.1: Suppose D is some set. A list over domain D is a partial function l : L ∼→ D
such that l has a finite domain.



124 PART III. THE WOL LANGUAGE

If i ∈ L and l(i) = p then we say p is in l with precedence i. The idea is that, if p and q occur
in l with precedences i and j respectively, and i < j, then p occurs in the list l before q.

We define the relation ≈ on lists to be such that l ≈ l′ iff there is a bijective function f :
dom(l)→dom(l′) such that if i, j ∈ dom(l), i < j, then f(i) < f(j), and for every i ∈ dom(l),
l(i) = l′(f(i)). Note that the relation ≈ is an equivalence on lists.

We will consider two lists, l and l′, to be equal if l ≈ l′.

For example, if we take (L, <) to be the natural numbers with their normal ordering, we could
represent the list [ “a”, “b”, “c”] as (1 7→ “a”, 2 7→ “b”, 3 7→ “c”), or, equally well, as (36 7→
“a”, 54 7→ “b”, 63 7→ “c”), and so on.

15.2 Assigning precedence to list elements

Given our new representation of lists, the problem is now to find a way assign precedences to
elements of a list in a target database, based on the precedences of elements of lists in the source
database.

We will adopt the same typing rules for terms and atoms involving list types as those given for
set types in definitions 13.2 and 13.4.

We will expand the definition of the semantic operator on types (definition 7.2) with

[[[τ ]]]σC ≡ (L ∼→ [[τ ]]σC)

However we will change the definition of the semantic operator on atoms from that in defini-
tion 13.10, so that [[·]]I : AtomsS → Env(I) → ({T,F} ∪ Pfin(L)) and

[[P ∈̇Q]]Iρ ≡


F if [[P ]]Iρ 6= ([[Q]]Iρ)(i)

for all i ∈ dom([[Q]]Iρ)
{n | ([[Q]]Iρ)(n) = [[P ]]Iρ} otherwise

So [[P ∈̇Q]]Iρ is F if [[P ]]Iρ does not occur in the list [[Q]]Iρ, and is the set of precedences with
which [[P ]]Iρ occurs in [[Q]]Iρ otherwise.

For simple clauses, such as our clause

X = MkPerson(N), X.name = N, MkPerson(C) ∈ X.children

⇐= P ∈ Parents, P.pname = N, P.cname = C

this would seem sufficient: we could take the clause to mean, if P is in list Person with precedence
i, then MkPerson(C) is in the list X.children with precedence i also.

However this does not solve the problem for a clause with multiple ∈̇ atoms in the body. For
example for a clause of the form

X∈̇L1 ⇐= Y ∈̇L2, Z∈̇L3, Φ



15 TRANSFORMATIONS OF ALTERNATIVE COLLECTION TYPES 125

where L1, L2 and L3 are lists, it is necessary to combine the precedences of the two ∈̇ atoms in
the body of the clause to find the precedence of the head of the clause.

At this point it is necessary to make some precise decisions about the underlying linear order
for lists. We will use the set of strings of natural numbers, IN∗, ordered lexicographically. We
will also assume that each list occuring in the source database has its precedences taken from
IN (or strings of length one). We can make this assumption without loss of generality since for
any list l there is an equivalent list l′ ≈ l with dom(l′) = {1, . . . , n} for some n.

Definition 15.2: A ranked set of atoms is a set of atoms, Φ, together with an assignment of a
distinct rank, r ∈ IN, to each atom of the form P ∈̇Q in Φ, such that the ranks of atoms in Φ
form an initial sequence of the natural numbers.

We write P ∈r Q to denote the atom P ∈ Q with rank r. We also adopt the convention, when
writing a sequence of atoms, that the order in which we write the atoms corresponds to their
ranks, when the sequence is interpreted as a ranked set of atoms. For example the sequence of
atoms

X ∈ Y.a, Z ∈ Y.b, Z = insdW, U ∈W

would be interpreted as the ranked set of atoms

{X ∈1 Y.a, Z ∈2 Y.b, Z = insdW,U ∈3 W}

We will change our definition of clauses (definition 13.7), to say that a clause consists of two
ranked sets of atoms: the head and the body.

Definition 15.3: We will define a semantic operator [[·]]IB on ranked sets of atoms, such that for
any I-environment ρ and ranked set of atoms Φ with atoms of ranks 1, . . . , k, [[Φ]]IBρ ⊆ IN∗, by

[[Φ]]IBρ ≡


∅ if [[φ]]Iρ = F

for some φ ∈ Φ{
n1 . . . nk

∣∣∣∣∣ where ni ∈ [[φi]]Iρ and φi has
rank i in Φ, for i = 1, . . . , k

}
otherwise

So [[Φ]]IBρ = ∅ if any of the atoms in Φ are unsatisfiable, and [[Φ]]IBρ consists of the set of
strings of precedences of ranked atoms in Φ, ordered by rank, otherwise.

For example, if [[X ∈ Y.a]]Iρ = {4, 7}, [[Z ∈ Y.b]]Iρ = {2, 33}, [[U ∈ W ]]Iρ = {15} and
[[Z = insdW ]]Iρ = T, then

[[{X ∈1 Y.a, Z ∈2 Y.b, Z = insdW, U ∈3 W}]]IBρ = {4.2.15, 4.33.15, 7.2.15, 7.33.15}

Note that, for any set of atoms Φ and I-environment ρ, ρ satisfies Φ iff [[Φ]]IBρ 6= ∅. In
particular, if Φ contains no atoms of the form P ∈̇Q, and ρ satisfies Φ, then [[Φ]]IBρ = {ε}, the
set containing only the empty string.



126 PART III. THE WOL LANGUAGE

The operator [[·]]IB then gives us a way of getting a precedence string from the body of a clause
with multiple ∈̇ atoms. We can use these precedences to order the elements of a list in the head
of the clause. So if L1 and L2 denoted the lists [“a”, “b”, “c”] and [“d”, “e”, “f”] respectively,
then the smallest list L3 satisfying the clause

X ∈ L3 ⇐= y ∈ L1, Z ∈ L2, X.#1 = Y, X.#2 = Z

would be

[(“a”,“d”), (“a”,“e”), (“a”,“f”), (“b”,“d”), (“b”,“e”), (“b”,“f”), (“c”,“d”), (“c”,“e”), (“c”,“f”)]

The next problem to face is how to assign precedences to target lists if they occur multiple times
in the head of a clause. For example suppose we had a clause

X ∈ L, Y ∈ L ⇐= Φ

and we found an environment that satisfied Φ. We would want to insert two elements into the
list L and assign them two distinct precedences. This time we will make use of the ranks on the
atoms in the head of the clause to determine the order of insertion.

Definition 15.4: For any σ ∈ IN∗, we define the semantic operator [[·]]Iσ on ranked sets of atoms,
such that for any ranked set of atoms Φ and I-environment ρ,

[[Φ]]Iσρ ≡


T if, for each φ ∈ Φ, if φ is of the form (P ∈̇rQ)

then σ.r ∈ [[φ]]Iρ
and [[φ]]Iρ = T otherwise

F otherwise

So, for example,

[[{X ∈1 Y.a, Z ∈2 Y.b, Z = insdW, U ∈3 W}]]I(4.2.15)ρ = T

iff 4.2.15.1 ∈ [[X ∈ Y.a]]Iρ, 4.2.15.2 ∈ [[Z ∈ Y.b]]Iρ, 4.2.15.3 ∈ [[U ∈ W ]]Iρ, and [[Z =
insdW ]]Iρ = T.

Then we could say a clause Ψ ⇐= Φ is satisfied by an instance I iff, for any I-environment ρ
such that dom(ρ) = Var(Φ), and any σ ∈ [[Φ]]IBρ, there is an extension of ρ, say ρ′, such that
[[Ψ]]Iσρ′ = T.

For example if L1 represented the list [(“a”,“b”), (“c”,“d”), (“e”,“f”)] then the smallest list L2

satisfying the clause
X.#1 ∈ L2, X.#2 ∈ L2 ⇐= X ∈ L1

would be [“a”,“b”,“c”,“d”,“e”,“f”].

Note that these definitions cause the elements inserted into a list by different atoms in the head
of a clause to be “interleaved”. By changing the definitions slightly we could make it so that all



15 TRANSFORMATIONS OF ALTERNATIVE COLLECTION TYPES 127

the elements inserted into a list by the first atom in the head of the clause come before all the
atoms inserted by the second atom in the list.

There remains a problem, however, if we are dealing with multiple clauses each of which may
insert into some target list. For example, suppose we had a transformation program with clauses

X ∈ P ⇐= Φ1

Y ∈ Q ⇐= Φ2

and we could find environments, ρ1 and ρ2 such that [[Φ1]]IBρ1 6= ∅ and [[Φ2]]IBρ2 6= ∅, and
[[P ]]Iρ1 = [[Q]]Iρ2. Then we would need to ensure the two clauses insert elements into the list
with different precedences.

Suppose Tr is a (normal form) transformation program. For each clause ∆ ∈ Tr we assign a
distinct rank, r ∈ IN to ∆. We will write Ψ ⇐=r Φ to represent that the clause Ψ ⇐= Φ has
rank r. When writing transformation programs, we will also assume that the transformation
clauses are written in order of ascending rank, so that we will not need to annotate the clauses
with their ranks.

We will take the approach that each clause inserts any values into a list before those inserted by
any other clauses of higher rank. In other words, if ∆1 ≡ (Ψ1 ⇐=r1 Φ1) and ∆2 ≡ (Ψ2 ⇐=r2 Φ2)
are two clauses in Tr, and r1 < r2, then any elements inserted into a list by clause ∆1 would
come before any inserted by the clause ∆2. We will ensure this property by prepending the rank
r of a clause ∆ to any of the precedences of elements inserted into some list by that clause.

Definition 15.5: Suppose I is an instance and ∆ ≡ Ψ ⇐= Φ a clause. Then I is said to satisfy
∆ with rank r iff, for any I-environment ρ such that dom(ρ) = Var(Φ), and any σ ∈ [[Φ]]IBρ,
there is an extension of ρ, ρ′ say, such that [[Ψ]]Ir.σρ′ = T.

An instance I is said to satisfy a transformation program Tr iff for every clause ∆ ∈ Tr, if ∆
has rank r, then I satisfies ∆ with rank r.

So, if we had a pair of clauses
X ∈ L3 ⇐= X ∈ L1

X ∈ L3 ⇐= X ∈ L2

where L3 is an expression representing the same list in each clause, then the smallest list L3

would be the result of appending L1 and L2.

Finally, having computed a transformation involving lists, we must replace any lists occuring in
the target database with equivalent lists in which the precedences are taken from IN, or sequences
with length one. This is so that we can compose transformations.

This now gives us all we need to do transformations between databases using lists instead of
sets. If we are dealing with source databases which involve both sets and lists, then we need to
invent some arbitrary precedence for each element of the set: in other words we need to treat
sets as lists with some arbitrary ordering on their elements. If we are transforming to a target
database involving both sets and list, then we can carry out the transformation as if the target



128 PART III. THE WOL LANGUAGE

database had only lists, and then throw away any precedence information for sets, inserting
elements in an unordered and duplicate-eliminating manner.

A consequence of this is that, if we are transforming from sets to lists, then the transformation
may not be deterministic because of the need to choose an arbitrary ordering on the elements
of a set. In practice, however, it is likely that we will be able to use some canonical ordering on
the elements of a set, so that this will not be a problem.



129

Part IV

Implementation and Trials of the WOL
Language

16 Introduction

In this section we will propose an approach to implementing database transformations specified
in the language WOL, based on the algorithms and techniques suggested in section 14. The
implementation works by taking a transformation program written in WOL and converting it to a
normal form program, which can then be translated into an underlying database programming
language. The architecture for such an implementation is illustrated in figure 17. In fact
this architecture has already been used for a prototype implementation of a restricted version
of WOL, which has been applied to some transformations between Human Genome Project
Databases (see section 19).

The input to the system is a WOL transformation program. The transformation rules will
normally be written by the user of the system. However a large numer of important constraints
can potentially be derived directly from the meta-data associated with the source and target
databases. The kind of contraints that can be derived this way depend on the particular DBMSs
being used, but frequently include type information, keys and some other dependencies. Such
contraints represent a significant part of a transformation program, but are time consuming and
tedious to program by hand. Deriving them directly from meta-data will reduce the amount of
grunge work that needs to be done by the programmer, and allow him or her to concentrate
on the structural part of a transformation. WOL programs written by hand might make use of
various shorthands and notational conveniences which would be resolved in the parsing phase.

The translation of a WOL transformation program has several stages. First the program is
translated into semi-normal form, using the algorithm from the proof of proposition 13.5. Then
the snf program is transformed into a normal-form program if possible. This is the most ex-
pensive part of the process: a naive implementation of the algorithm suggested in section 14.7
would be intolerably inefficient, and a number of optimizations are required (section 17). Finally



130 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

WOL
Implementation

Translator to snf

Normalization  program

Translator to CPL

snf tranformation program

normal-form transformation

CPL code

WOL transformation
program

DB-schemas
meta-data

Parser

User input

CPL

Source DBs Target DB

Meta-
data

data
Input

data
Output

Figure 17: Architecture for proposed implementation of WOL transformations



16 INTRODUCTION 131

the normal form program is converted into some underlying database programming language,
allowing the transformation to be carried out.

Current work has concentrated on translating WOL transformation programs into CPL [49], a
language based on the nested relational model. The reason for using CPL as an implementation
language is that it supports many of the data-types that we are interested in, is easily extensible,
and can be used to access a variety of different data sources and database systems, including
those that we wished to use in our trials. Further, it is an easy task to add additional data drivers
to CPL, so that transformations between new database systems can be carried out. However
translating normal form WOL programs into some other sufficiently expressive DBPL should be
a straightforward task, and so the implementation should be easily adaptable to other systems.
Beyond adding new data-drivers to CPL, the only major task necessary in order to adapt the
WOL implementation to new database systems is adding mechanisms for reading meta-data
from these systems and translating it into WOL constraints.

In the remainder of this section we will discuss the prototype WOL implementation, and de-
scribe its limitations. In section 17 we will describe a series of optimizations necessary in order
to build a pratical implementation of the WOL normalization algorithm. In section 18 we de-
scribe how variants in a source database schema can lead to exponential blowups in the size
of a normal-form transformation program, and in the size of the corresponding program in an
underlying database programming language. We show how this problem can be avoided by
introducing intermediate data structures and using two-stage transformations. In section 19
we describe some trials in which we applied the prototype implementation to various database
transformation problems encountered at the Philadelphia Genome Center for Chromosome 22
at the University of Pennsylvania. We will motivate the transformation problems, and briefly
describe the biological domain which they addressed, and will then describe the various pro-
grams that were used to implement these transformations. We will describe how the certain
different methods of programming the transformation effected the performance of the system
and the size of the normal-form programs generated.

16.1 A Prototype Implementation

A prototype implementation, based on a restricted datamodel, has been developed in order to
test some of these ideas, and to demonstrate the practical use of such a system. The prototype
system was developed in collaboration with the Philadelphia Genome Center for Chromosome
22, at the University of Pennsylvania, and was intended to address database transformation
problems arising in a Human Genome Project center.

The prototype implementation made use of a restricted form of the language, WOL++, which
was based on the nested relational calculus with extensions for simulating object identities.
Instead of incorporating the notion of classes into the type system of the language, identities in
WOL++ are attributes which are generated using Skolem functions: an approach proposed in
[24]. In addition the prototype is limited to the case where there are no nested sets: a target
database is considered to consist of a tuple of sets; each set containing objects built using record



132 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

and variant constructors, and possibly identities generated using Skolem functions.

There were several reasons for these restrictions, the most significant being that it seemed best
to build a prototype for a simplified case in order to get an idea of the problems involved, before
attempting to implement the system for more general transformations. The planned Human
Genome Project trials of the system involved transformations from various data sources into
target flat-relational (Sybase) databases, and so it seemed best to concentrate on these trans-
formations first. In addition the target language, CPL, does not incorporate direct support of
object-identities and classes, and extending CPL to support Skolem functions was a relatively
easy task. It is still not clear how best to extend CPL to support general object-identities and
classes. In the following sections we will be concentrating on describing a proposed implemen-
tation of the full language WOL, assuming a simply-keyed and non-nested target schema as
described in section 14.5. However most of the optimizations proposed have been succesfully
incorporated into the prototype implementation, or address known problems and inefficiencies
in this implementation. The trials described in section 19 were carried out using the WOL++
implementation, but an effort was made to structure the transformation programs and data-
structures in a way which would behave in the same manner as a full WOL implementation.
Further details of the WOL++ implementation may be found in [16].

17 Optimizing the Normalization Algorithm

Proposition 14.9 suggests an algorithm for converting a semi-normal form transformation pro-
gram into an equivalent normal form program. Such an algorithm may be summarized as:

1. Generate a set of description clauses;

2. For each description clause generate the maximal unfolding sequences starting from that
clause, while testing for recursion;

3. If recursion is detected then raise a “recursive transformation program” error;

4. If any of the clauses resulting from the maximal unfolding sequences are not complete
(they contain no target terms in their body but are not in normal form) then raise an
“incomplete transformation program” error;

5. Otherwise return those final clauses that are in normal form.

The process of generating the maximal unfolding sequences involves doing a breadth-first un-
folding of each description clause on all the transformation rules: a process that is inherently
exponential. In addition, at each stage there may be many possible unifiers for each transforma-
tion rule, and the number of description clauses is potentially exponential in the number of set
and variant type constructs in the schema. It is clear then that such a naive algorithm would
be infeasible.



17 OPTIMIZING THE NORMALIZATION ALGORITHM 133

Fortunately we can use various information in order to reduce the search space and restrict
our attention to a small subset of relevent unfolding sequences. Many unfolding sequences
are equivalent in that they differ only in the order in which rules are applied, but result in
the same final clauses, while others are subsumed by more general unfolding sequences, or can
never reach a normal form. Our objective in optimizing the normalization process is therefore
to construct an algorithm which explores as few equivalent unfoldings as possible, and which
discards unproductive unfolding sequences as early as possible.

Avoiding Multiple Description Clauses

If the type associated with a target class by a schema involves multiple variants or set type
constructors, then the number of distinct description clauses could be exponential in the size of
the type. For example, suppose our target schema consisted of a single class, CTgt ≡ {C}, with
associated type

τC ≡ (#a : 〈|#d : b,#e : b|〉,#b : 〈|#f : b,#g : b|〉,#c : {b})

Then we would have description clauses:

X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ

′

⇐= X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ

′;
X ∈ C, X.#a = Y, Y = ins#eY

′, X.#b = Z, Z = ins#fZ
′

⇐= X ∈ C, X.#a = Y, Y = ins#eY
′, X.#b = Z, Z = ins#fZ

′;
X ∈ C, X.#a = Y, Y = ins#dY

′, X.#b = Z, Z = ins#gZ
′

⇐= X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#gZ

′;
X ∈ C, X.#a = Y, Y = ins#eY

′, X.#b = Z, Z = ins#gZ
′

⇐= X ∈ C, X.#a = Y, Y = ins#eY
′, X.#b = Z, Z = ins#gZ

′;
X ∈ C, X.#a = Y, Y = ins#dY

′, X.#b = Z, Z = ins#fZ
′, W ∈ X.#c

⇐= X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ

′, W ∈ X.#c

and so on. Clearly there is an overhead in generating so many different clauses, and in generating
unfolding sequences for each of them. Instead we can merge the the description clauses into a
single clause:

X ∈ C, X.#a = Y, Y = ins#dY1, Y = ins#dY2,
X.#b = Z, Z = ins#fZ1, Z = ins#gZ2, W ∈ X.#c

⇐= X ∈ C, X.#a = Y, Y = ins#dY1, Y = ins#dY2,
X.#b = Z, Z = ins#fZ1, Z = ins#gZ2, W ∈ X.#c

If this is taken as a regular WOL clause then both the body and the head would be unsatisfiable.
Instead the various ins atoms for each variable are taken as being disjunctive, and, when an atom



134 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

of the form X=̇insaY is matched in a description clause, any other atoms of the form X=̇insbY
′,

where b 6= a, are also removed from the clause. For example if we had a transformation clause

X ∈ C, X.#a = Y, Y = ins#dY
′ ⇐= Φ1

and we were to unfold our description clause on it, we would get a clause

X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ1, Z = ins#gZ2, W ∈ X.#c

⇐= X ∈ C, X.#b = Z, Z = ins#fZ1, Z = ins#gZ2, W ∈ X.#c, Φ1

A set inclusion atom in a description clause can potentially be matched many times or not at
all. Consequently, if an atom Y ∈̇X in a description clause is matched, a new copy of the atom
with Y renamed is added to the clause, and similarly copies of any other atoms restricted by Y .
So, if the next step in our unfolding sequence was to match on a clause with a transformation
clause

X ∈ C, W ∈ X.#c ⇐= Φ2

then we would get the clause

X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ1, Z = ins#gZ2,

W ∈ X.#c, W ′ ∈ X.#c
⇐= X ∈ C, X.#b = Z, Z = ins#fZ1, Z = ins#gZ2, W

′ ∈ X.#c, Φ1, Φ2

Once maximal unfolding sequences have been found for a description clause, any remaining set
inclusion atoms which originated from the description clause, and any other atoms that were
matched but remained in the clause because they were needed to maintain range-restriction, are
removed. So if the result of our unfolding sequence was a clause:

X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ

′,W ∈ X.#c, W ′ ∈ X.#c
⇐= X ∈ C, W ′ ∈ X.#c, Φ1, Φ2, Φ3

Then this would be rewritten to

X ∈ C, X.#a = Y, Y = ins#dY
′, X.#b = Z, Z = ins#fZ

′,W ∈ X.#c
⇐= Φ1, Φ2, Φ3

Note that it is only variant insertion atoms and set inclusion atoms that originated in a descrip-
tion clause that can be treated in this special way: any ins or ∈̇ atoms that were introduced
by an unfolding must be treated normally. It is therefore necessary to tag those atoms that
belonged to the original description clause of an unfolding sequence, and to keep track of which
atoms originated from which clauses.



17 OPTIMIZING THE NORMALIZATION ALGORITHM 135

Using Maximal Unifiers

In general there will be many possible unifiers between two clauses. For example if we have a
target clause

Ψ ⇐= X = C, Y ∈ X, Z =!Y, U = πaZ, V = πbZ

and an unfolding clause

X ′ = C, Y ′ ∈ X ′, Z ′ =!Y ′, U ′ = πaZ
′ ⇐= Φ

then there is an obvious unifier, namely

U ≡ (X 7→ X ′, Y 7→ Y ′, Z 7→ Z ′, U 7→ U ′)

However there are also many other possible unifiers, such as (U 7→ U ′) and (Z 7→ Z ′, U 7→ U ′)
and so on. At each stage we limit our attention to the maximal unifiers: that is we unify as
many variables as possible at each stage.

Ordering Transformation Rules

In general there may be many equivalent unfolding sequences for a particular target clause,
differing only in the order in which they apply clauses. For example, suppose we have a target
class C with τC = (#a : b, #b : b), and we are unfolding the clause

Ξ ≡ (Ψ ⇐= X ∈ C, X.#a = Y, X.#b = Z)

and transformation clauses

∆1 ≡ (X ∈ C, X.#a = Y ⇐= Φ1)
∆2 ≡ (X ∈ C, X.#b = Z ⇐= Φ2)

where Φ1 and Φ2 contain no target atoms. Then we can unfold Ξ first on ∆1 and then on ∆2,
or first on ∆2 and then on ∆1. In either case the result is

Ψ ⇐= Φ1,Φ2

so it is unnecessary to consider both unfolding sequences.

Note, however, that if we have additional clauses then we also need to consider the unfolding
sequences involving unfolding Ξ on only ∆1 or only ∆2, since unfolding on ∆1 or ∆2 may
preclude unfolding on some other clause.

We can avoid such multiple unfolding paths by assuming some arbitrary ordering on the trans-
formation clauses of a program. For example, if we decided that ∆1 came before ∆2 in the
ordering, then we would not attempt to unfold on ∆1 after having unfolded on ∆2.



136 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

A problem with this approach is that unfolding on one clause might enable an unfolding on
another clause which was not proviously possible. For example, suppose we have two transfor-
mation clauses:

∆′
1 ≡ (X ∈ C, X.#a = Y ⇐= Φ1)

∆′
2 ≡ (X ∈ C, X.#b = Z ⇐= X ∈ C, X.#a = Y, Φ2)

where ∆′
1 comes before ∆′

2 in our ordering, and we were trying to unfold a clause

Ξ′ ≡ (Ψ ⇐= X ∈ C, X.#b = Z)

Then Ξ′ is not unfoldable on ∆′
1. However we can unfold Ξ′ on ∆′

2 followed by ∆′
1, to get the

clause

Ψ ⇐= Φ1,Φ2

This unfolding sequence should be allowed because the unfolding on ∆′
1 involves matching some

atoms that were not available at the start of the unfolding sequence.

In order to deal with this problem, we need to mark each atom of the unfolding sequence with
the set of clauses that have been applied or declined since the atom was introduced. For an
unfolding on some tranformation clause ∆ to be valid there must be some atom caught by the
unfolding which is not yet marked with ∆.

The following psuedo-ML program expresses this algorithm more clearly. The function marks(φ)
returns the set of transformation clauses with which the atom φ is marked. The function
mark(Ξ,∆) returns a clause which is the same as Ξ except that each atom in its body is marked
with ∆. unifiers(Ξ,∆) returns the set of maximal unifiers from ∆ to Ξ, and Unfold and Caught
are the functions described in section 14.6.



17 OPTIMIZING THE NORMALIZATION ALGORITHM 137

fun unfold on unifier (Ξ,∆,U) =
let CA = Caught(Ξ,∆,U)
in

if (∃φ ∈ CA · ∆ 6∈ marks(φ)) /∗ new atoms are caught ∗/
then Unfold(mark(Ξ,∆), ∆, U)
else ∅

end;

fun apply trans clause (Ξ,∆) =
let UNS = unifiers(Ξ,∆)
in

{mark(Ξ,∆)} ∪
⋃
U∈UN unfold on unifier(Ξ,∆,U)

end;

fun repeat apply trans clause (TCS,∆) =
let NewTCS =

⋃
Ξ∈TCS apply trans clause(Ξ,∆)

in
if size(TCS) = size(NewTCS) /∗ no new unfoldings ∗/
then TCS
else repeat apply trans clause (NewTCS,∆)

end;

fun apply trans prog (TCS, (∆::Prog)) =
repeat apply trans clause (apply trans prog(TCS,Prog),∆)

| apply trans prog (TCS, nil) = TCS;

fun repeat apply trans prog (TCS,Prog) =
let NewTCS = apply trans prog (TCS,Prog)
in

if size(TCS) = size(NewTCS) /∗ no newly unfoldable clauses ∗/
then TCS
else repeat apply trans clause (NewTCS,∆)

end;

So the function repeat apply trans prog takes a set of clauses to be unfolded and a list of
transformation clauses as its arguments. The order imposed on the transformation clauses is
taken to be the reverse of the order of the list. The algorithm then repeatedly cycles through
the list of transformation clauses, trying to apply each clause as many times as possible, until
that clause yields no more unfoldings, at which point it goes onto the next. When none of the
transformation clauses yield any new unfoldings then the algorithm terminates.

Note that this algorithm is slightly simplified and does not include tests for recursion.



138 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

Avoiding Redundant Unfoldings

It is also possible for an unfolding on one clause to be made redundant by an unfolding on some
later clause in an unfolding sequence. For example if we had transformation clauses

∆1 ≡ (Z ∈ C, X = Z.#a, Y = Z.#b⇐= W ∈ D1, X = W.#a, Y = W.#b)
∆2 ≡ (Z ∈ C, X = Z.#a, Y = Z.#c⇐= W ∈ D2, X = W.#a, Y = W.#c)
∆3 ≡ (Z ∈ C, X = Z.#a, Y = Z.#b, X = Z.#c⇐= W ∈ D3, X = W.#a, Y = W.#b)

and we are unfolding a clause

Ξ ≡ (Ψ ⇐= Z ∈ C, X = Z.#a, Y = Z.#b, V = Z.#c)

Then unfolding Ξ first on ∆1 and then on ∆3 yields the clause

Ψ[Y/V ] ⇐= U ∈ D1, X = U.#a, Y = U.#b, W ∈ D3, X = W.#a, Y = W.#b

which is subsumed by the clause reached by just unfolding Ξ on ∆3:

Ψ[Y/V ] ⇐= W ∈ D3, X = W.#a, Y = W.#b

Equally an application of ∆2 would be made redundant by a following application of ∆3, though
an application of ∆1 could usefully follow an application of ∆2 and vice versa. We would like to
avoid such redundent unfoldings. In order to do so, it is necessary to adapt our algorithm so that
an unfolding is not carried out if it makes a previous unfolding redundant. We can make use
of the marking of atoms in our target clause to achieve this, by changing the unfold on unifier
function as follows:

fun unfold on unifier (Ξ,∆,U) =
let CA = Caught(Ξ,∆,U)
in
if (∃φ ∈ CA · ∆ 6∈ marks(φ)) /∗ new atoms are caught ∗/
∧¬(∃∆′ · ∀φ ∈ CA · ∆′ ∈ marks(φ)) /∗ and no redundant unfoldings ∗/

then Unfold(mark(Ξ,∆), ∆, U)
else ∅

end;

Using Term Paths for Early Rejection of Unproductive Unfolding Sequences

The process of generating the maximal unifiers on a transformation clause, and then checking if a
clause is unfoldable on that transformation clause is expensive. We can make use of term paths
(section 14.4) in order to rule out many non-applicable transformation clauses early without
having to attempt to unify the clauses.



17 OPTIMIZING THE NORMALIZATION ALGORITHM 139

For each transformation clause in a program we can store a list of the term paths of variables
occuring in the head of the clause. For our target clause we can keep track of the term paths of
relatively base variables in the body of the target clause (section 14.6). If the intersection of the
two sets of term paths for a target clause and a transformation clause is empty then the target
clause will not be unfoldable on the transformation clause.

For example suppose we were unfolding a clause

Ξ ≡ (Ψ ⇐= X ∈ C, Y = X.#a, Z = X.#b)

and we had a transformation clause

∆ ≡ (X ∈ C, W = X.#c⇐= Φ)

Then the term paths of relatively base variables in Ξ would be (C, ∈̇!π#a) and (C, ∈̇!π#b). The
set of term paths in the head of ∆ would be {(C, ε), (C, ∈̇), (C, ∈̇!), (C, ∈̇!π#c)}. Consequently Ξ
is not unfoldable on ∆.

More significantly, we can use such records of term paths in order to detect unfolding sequences
which can not reach normal form, and to stop attempting to unfold them at an earlier stage.
In the previous example, suppose that there are no transformation clauses which the term path
(C, ∈̇!π#a) in their sets of term paths. Then we will not be able to unfold Ξ to an equivalent
normal form clause even if there are clauses with the term path (C, ∈̇!π#b) in their term path
list.

We can combine this technique with the markings on atoms of our target clause in order to catch
still more of the unproductive unfolding sequences: if Ξ contains a relatively base variable X,
such that X has term path (C, µ) and for any φ in the body Ξ such that X occurs in φ, there
is no transfomation clause ∆ such that ∆ 6∈ marks(φ) and ∆ contains a variable with type path
(C, µ), then we cannot unfold Ξ to an equivalent normal form clause.

Using Range Restriction to Improve the Efficiency of Unification

Finding the most general unifier between two arbitary sets of atoms in computationally expensive
(exponential in the number of atoms). Fortunately we have a great deal of additional information
about the atoms of our clauses: that each term is range restricted and that the atoms are in
semi-normal form and there are no equality atoms between variables. This means that, rather
than representing clauses as pairs of sets of atoms, we can represent them as pairs of forests (sets
of trees). Each tree in the forests would have a class as its root, variables as its other nodes,
and edges marked with the symbols !, ∈̇, πa, πb, . . . , insa, insb, . . .. Atoms of the forms X ˙6=Y or
X ˙6∈Y would be represented as additional sets of atoms.

For example the clause

X = C, Y ∈ X, Z =!Y, U = πaZ, V = πbZ

⇐= W = D, Q ∈W, R =!Q, U ∈ R, V ∈ R,U 6= V

Would be represented by the tree structures



140 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

?

?

?

�
�

�	

@
@

@R

?

?

?

�
�

�	

@
@

@R

..........................

πa

∈

!
Y

X

C

Z

U V

πb

∈

!

U V

∈

D

W

Q

R
∈

U 6= V

Unifying such trees is in practice considerably more efficient than unifying arbitary sets of atoms:
it is still potentially exponential in the number of ∈̇ atoms, but this is usually small. If we were
to limit ourselves to cases where the was at most one atom of the form X∈̇Y for any variable Y
then the unification algorithm would be linear in the number of atoms.

Dynamically Altering Transformation Programs

The rules of a transformation program will in general define the objects of one target class in
terms of the objects of various other target classes. Consequently it is often necessary to repeat
a series of unfoldings in several different unfolding sequences, possibly for different target classes.

For example, suppose our target schema had four classes, {C1, C2, C3, C4}, our source schema
contained three classes, {D1, D2, D3}, and our transformation program Tr consisted of the
clauses:

∆1 ≡ (X ∈ C1, U = X.#a, V = X.#b
⇐= Y ∈ C3, U = Y.#a, V = Y.#b, Z ∈ D1, U = Z.#a)

∆2 ≡ (X ∈ C2, U = X.#a, V = X.#b
⇐= Y ∈ C3, U = Y.#a, V = Y.#b, Z ∈ D2, V = Z.#b)

∆3 ≡ (Y ∈ C3, U = Y.#a, V = Y.#b⇐= Z ∈ C4, U = Z.#a, V = Z.#b)
∆4 ≡ (Z ∈ C4, U = Z.#a, V = Z.#c⇐= W ∈ D3, U = W.#a, V = W.#b)

Then in order to get a normal form clause for the class C1 it is necessary to unfold a description
clause on first ∆1, then ∆3 and then ∆4, whereas to find a normal form clause for C2 it is
necessary to unfold on ∆2 then ∆3 and then ∆4, and for C3 it is necessary to unfold on ∆3

then ∆4. Clearly there is some duplicate effort involved here, and we could improve efficiency
by “memo-izing” the result of unfolding ∆3 then ∆4. In particular, if we first generate a new
rule, say ∆′

3, by unfolding ∆3 on ∆4, and then use this rule in place of ∆3 in our transformation
program, then we would replace the repeated unfolding sequences with single unfoldings on ∆′

3.



17 OPTIMIZING THE NORMALIZATION ALGORITHM 141

We define a partial normal form clause to be a clause Ψ ⇐= Φ such that

1. Ψ ⇐= Φ is in semi-normal form;

2. Φ contains no target terms; and

3. for any atom of the form X∈̇Y in Ψ, either X ∈ Var(Φ) or X is characterized in Ψ ⇐= Φ.

Assuming that we are dealing with a non-nested target schema, the phrase “X is characterized
in Ψ ⇐= Φ” here means that

1. if ` X : C then Ψ ∪ Φ contains an atom X=̇MkCZ,

2. if ` X : b then Ψ ∪ Φ contains an atom X=̇cb,

3. if ` X : (a1 : τ1, . . . , an : τn) then Ψ ∪ Φ contains atoms Zi=̇πaiX for i = 1, . . . , n, and

4. if ` X : 〈|a1 : τ1, . . . , an : τn|〉 then Ψ∪Φ contains an atom X=̇insaiZ for some i ∈ 1, . . . , n.

So partial normal form clauses are similar to normal form clauses, except that we don’t require
that they give a full description of a value. Using a partial normal form clause in an unfolding
sequence will not lead to any new unfoldings. Consequently we can avoid many repeated un-
folding sequences by unfolding rules to partial normal form, and then using the partial normal
form rules instead of the original rules.

In the previous example, the rule ∆′
3 would be the partial normal form clause

∆′
3 ≡ (Y ∈ C3, U = Y.#a, V = Y.#b⇐= W ∈ D3, U = W.#a, V = W.#b)

Note that, in general, unfolding a transformation clause to partial normal form may introduce
new atoms into the head. Consequently it is possible that converting rules to partial normal
form will increase the number of rules in our program with a particular term path in their head.
For example suppose we had rules

∆5 ≡ (X ∈ C, Y = X.#a⇐= X ∈ C, Z = X.#b,Φ5)
∆6 ≡ (X ∈ C, Z = X.#b, W = X.#c⇐= Φ6

where Φ5 and Φ6 contain no target terms. Then unfolding ∆5 on ∆6 returns the partial normal
form rule

∆′
5 ≡ (X ∈ C, Y = X.#a, W = X.#c⇐= Φ5,Φ6)

If we replaced ∆5 with ∆′
5, there would then be two clauses with heads containing a variable



142 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

with term path (C,∈!π#c) instead of one. Consequently, when unfolding other clauses which
had relatively base variables with this term path, there would be more clauses to unfold them
on.

This increase in the number of clauses for a particular term path could potentially outweigh
any advantage gained by converting rules into partial normal form. However we can avoid this
problem by not changing the term path sets associated with a clause when we replace it with
partial normal form clauses. In the above example we would then count the term path set of
∆′

5 as being {(C, ε), (C,∈), (C,∈!), (C,∈!π#a)} — the same as the term path set for ∆5. It is
safe to do this since any new atoms in the head of ∆′

5 would have been generated by some other
clause, and will therefore already be implied by other clauses in the transformation program.

Stratifying Transformation Programs

If we are going to convert rules to partial normal form, it is first necessary to decide on an order
in which to unfold them. To do so, we first stratify the transformation program.

Given a transformation program, Tr, we construct its dependency graph, G(Tr), as follows:

1. The nodes of G(Tr) are the target classes CTgt.

2. G(Tr) contains an edge (C ′, C) iff there is a clause Ψ ⇐= Φ in Tr such that there is an
X ∈ Var(Ψ) \Var(Φ) with a type path (C, µ), and there is a Y ∈ Var(Φ) with a type path
(C ′, µ′), and C 6= C ′.

A stratification of CTgt for the transformation program Tr is a series of disjoint sets of target
classes C1, . . . , Ck such that

1. C1 ∪ . . . ∪ Ck = CTgt;

2. if C ∈ Ci and C ′ ∈ CTgt are such that G(Tr) contains the edge (C ′, C) but not the edge
(C,C’) then C ∈ Cj for some j < i; and

3. if C ∈ Ci and C ′ ∈ CTgt are such that G(Tr) contains the edges (C,C ′) and (C ′, C) then
C ′ ∈ Ci.

For example, for the transformation clauses ∆1, ∆2, ∆3 and ∆4 described previously, a stratifi-
cation of the classes {C1, C2, C3, C4} would be {C4}, {C3}, {C1, C2}.

If we have a stratification C1, . . . , Ck of the target clauses CTgt for a transformation program Tr,
and C ∈ Ci, C ′ ∈ Cj where j < i, it follows that no transformation clauses for C will be used in
the unfolding of C ′, but transformation clauses for C ′ may be needed in unfolding C.

Consequently, a good strategy for deciding the order in which to convert transformation clauses
to partial normal form is to first stratify the target casses, and, for each strata, unfold all the
transformation clauses for classes in that strata before going on to the next strata.

In our example, we would first unfold the clause ∆4, then ∆3, and then ∆1 and ∆2.



18 TWO STAGE TRANSFORMATIONS 143

18 Two Stage Transformations

In section 17 we saw that the presence of variant types in a target schema can lead to an
exponential blowup in the number of description clauses that need to be unfolded. In this section
we will see that variant types in a source type will leed to an exponential blowup in the number of
normal form clauses in a transformation. In fact this is a more serious problem than that caused
by multiple variants in a target type: in practice, though the number of description clauses for
a target schema may be exponential in the number of variant types, most of these description
clauses will not unfold to valid normal-form transformation clauses, and, as has already been
shown, by reinterpreting the semantics of certain combinations of atoms in a description clause,
we can avoid having to generate an exponential number of description clauses. However, if a
transformation program is to reflect all the possible combinations of data in a source database,
it can be inevitable that the number of normal form clauses will be exponential in the number
of variants in a source type, and that all these normal form clauses must be generated. We will
propose a method of dealing with this problem which relies on generating various intermediate
data-structures and implementing a transformation in two stages. First we will briefly describe
how this problem arises when dealing with a variety of data models.

18.1 Variants and Option Types

Though variants themselves are not directly supported by many data-models, almost all data-
models do support them in some restricted form. For example variants may be used to encode
generalizations in an object-oriented or semantic data-model. A more pervasive source of variants
are optional attributes. An optional attribute is an attribute that can either take some value
or can be undefined or Null. Some form of optional attributes is included in almost every
data-model: in certain data-models, such as ACEDB [43] virtually every attribute is optional.

In a type-driven model, such as the WOL model defined in section 7, a natural way of dealing
with optional attributes would be to have an option type constructor: for any type τ , a value
of type option(τ) would be either a value of type τ or none. The reason option types were not
included in the type system of definition 7.1 is because they can easily be encoded as variant
types: option(τ) can be considered as a shorthand for 〈|some : τ,none : unit|〉.

Note: this interpretation of option types is not in fact well suited to optional attributes occuring
in the target schema of a transformation. This is because we would like a value of option type
to default to being none if it is not defined to be anything else by a transformation program,
and so we would like a none value to be less than any defined or present value in our ordering
on instances. A better interpretation of option types for these purposes would be as sets with
cardinality at most one. However, since in this section we are concerned with option types
occuring in source schemas, our interpretation of options as variants will suffice.

Since we would like to show that the problem of exponential blowup in the number of normal form
transformation clauses is a pervasive one, effecting almost all data-models, we will concentrate
on showing how these problems can arrise from source schemas involving only option types and



144 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

no other variants.

We will interpret option(τ) as a shorthand for 〈|some : τ,none : unit|〉, none as a shorthand for
insnull(), and some(p) as a shorthand for inssome(p).

18.2 Variants in Source Types: an Example

Suppose we have a source schemas with a single class C, with associated type τC ≡ (id : b, a1 :
option(b), . . . , ak : option(b)): that is, objects of class C have an attribute id and k optional
attributes a1, . . . , ak. Suppose that we were transforming transforming an instance of class C to
a new class D with associated type τD ≡ (id : b,b1 : b, . . . ,bk : b), and that the transformation
mapped objects in C to objects in D with the same id attributes, and with the attribute bi
equal to the value of ai if it is defined, and equal to some default value cb if the value of ai is
null. Suppose also that the id attributes are keys for both C and D, so that the key types of C
and D are κC ≡ κD ≡ b.

The transformation can be expressed in WOL by the following 2k + 1 clauses:

X ∈ D, X = MkD(Z), X.id = Z ⇐= Y ∈ C, Y.id = Z;
X.b1 = W ⇐= X ∈ D, X.id = Z, Y ∈ C, Y.id = Z, Y.a1 = some(W );
X.b1 = cb ⇐= X ∈ D, X.id = Z, Y ∈ C, Y.id = Z, Y.a1 = none;

...
...

X.bk = W ⇐= X ∈ D, X.id = Z, Y ∈ C, Y.id = Z, Y.ak = some(W );
X.bk = cb ⇐= X ∈ D, X.id = Z, Y ∈ C, Y.id = Z, Y.ak = none;

However, when converted to normal-form, this transformation program yields 2k transformation
clauses:

X ∈ D, X = MkD(Z), X.id = Z, X.a1 = cb, . . . , X.ak = cb

⇐= Y ∈ C, Y.id = Z, Y.a1 = none, . . . , Y.ak = none;
X ∈ D, X = MkD(Z), X.id = Z, X.a1 = cb, . . . , X.ak−1 = cb, X.ak = Wk

⇐= Y ∈ C, Y.id = Z, Y.a1 = none, . . . , Y.ak−1 = none, Y.ak = some(Wk);
...

...
X ∈ D, X = MkD(Z), X.id = Z, X.a1 = W1, . . . , X.ak = Wk

⇐= Y ∈ C, Y.id = Z, Y.a1 = some(W1), . . . , Y.ak = some(Wk);

In fact this problem is common to any transformation in which the source database involves
multiple variants: if the type τC of a source class C involves k non-nested variants, each with
more than one choice, then it will require at least 2k clauses to cover all the possible values of an
object of class C. Further this is not a problem particular to WOL normal-form transformation
programs: the size of a transformation program directly implementing such a transformation
written in a language such as CPL or IQL, or any other language which does not allow partial
descriptions of values, will be exponential in the number of variants in the source type.



18 TWO STAGE TRANSFORMATIONS 145

Clearly the aproach we have described so far will leed to unmanageably large transformation
programs if our source schema involves many variants or optional types, and some way to avoid
these problems is required. In the remainder of this section, we will show that in most cases, if,
instead of implementing transformations in a single pass, we introduce some intermediate data
structures and perform a transformation in two stages, we can avoid this problem.

18.3 Two-Stage Transformation Programs

Consider again the source schema with a single class C described in section 18.2. Suppose we
have a target schema with k classes, D1, . . . , Dk, each with associated type τDi ≡ (id : b, bi : b),
and each with the id attribute as a key. Consider the transformation between these two schemas
given by the clauses:

X ∈ D1, X = MkD1(Z), X.id = Z, X.b1 = W ⇐= Y ∈ C, Y.id = Z, Y.a1 = some(W );
X ∈ D1, X = MkD1(Z), X.id = Z, X.b1 = cb ⇐= Y ∈ C, Y.id = Z, Y.a1 = none;

...
...

X ∈ Dk, X = MkDk(Z), X.id = Z, X.bk = W ⇐= Y ∈ C, Y.id = Z, Y.ak = some(W );
X ∈ Dk, X = MkDk(Z), X.id = Z, X.bk = cb ⇐= Y ∈ C, Y.id = Z, Y.ak = none;

Each of these clauses maps part of the source class C to one of the classes Di. Also note
that, once converted to semi-normal form, these clauses will already be in normal-form: so the
equivalent normal form transformation program will have exactly 2k clauses.

Next consider the transformation from the schema with classes D1, . . . , Dk to the schema of
section 18.2 with single class D given by the transformation clauses:

X ∈ D, X = MkD(Z), X.id = Z, X.b1 = W1 ⇐= Y1 ∈ D1, Y1.id = Z, Y1.b1 = W1;
...

...
X ∈ D, X = MkD(Z), X.id = Z, X.bk = Wk ⇐= Yk ∈ D1, Yk.id = Z, Yk.bk = Wk;

These clauses unfold to a normal-form transformation program with a single clause:

X ∈ D, X = MkD(Z), X.id = Z, X.b1 = W1, . . . , X.bk = Wk

⇐= Y1 ∈ D1, Y1.id = Z, Y1.b1 = W1, . . . Yk ∈ Dk, Yk.id = Z, Yk.bk = Wk;

Further, composing this transformation with the previous transformation from C to D1, . . . , Dk

yields a transformation equivalent to the direct transformation from C to D of section 18.2: by
decomposing the transformation into two stages we have encoded it in a total of 2k + 1 normal
form transformation clauses.



146 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

18.4 Generality of Two-Stage Decompositions of Transformation Programs

The question naturally arises as to whether it is always possible to decompose a transformation
into two stages, using a number of clauses and intermediate classes linear in the number of
variant types in the source schema. Unfortunately the answer to this is negative. For example
consider once again the source schema with single class C described in section 18.2, and a target
schemas with a single class E with associated type τE ≡ (id : b, b : b).

Suppose that we have 2k distinct constants of type b, c1, . . . , c2k , and consider the transformation
program given by

X ∈ E, X = MkE(Z), X.id = Z, X.b = c1
⇐= Y ∈ C, Y.id = Z, Y.a1 = none, Y.a2 = none, . . . , Y.ak = none;

X ∈ E, X = MkE(Z), X.id = Z, X.b = c2
⇐= Y ∈ C, Y.id = Z, Y.a1 = some(W1), Y.a2 = none, . . . , Y.ak = none;

X ∈ E, X = MkE(Z), X.id = Z, X.b = c3
⇐= Y ∈ C, Y.id = Z, Y.a1 = none, Y.a2 = someW2, . . . , Y.ak = none;

X ∈ E, X = MkE(Z), X.id = Z, X.b = c4
⇐= Y ∈ C, Y.id = Z, Y.a1 = some(W1), Y.a2 = some(W2), . . . , Y.ak = none;

...
...

X ∈ E, X = MkE(Z), X.id = Z, X.b = csk

⇐= Y ∈ C, Y.id = Z, Y.a1 = some(W1), Y.a2 = some(W2), . . . , Y.ak = some(Wk);

It is clear that any composition of transformation programs equivalent to this transformation
program will involve at least 2k clauses, simply because a separate clause is required for each
constant ci.

It appears that the required property, in order to be able to decompose a transformation program
into two stages with a linear number of clauses, is that it should somehow be possible to separate
the values arising from each of the variants in the source database. Experience shows that most
“natural” transformations involving variants can be decomposed in this manner.

It would be desirable to find some reasonably broad restrictions on transformations or transfor-
mation programs which guarantee that they can be implemented using a two-stage transforma-
tion with linearly many clauses, and further to find ways of automatically generating interme-
diate data-structures from transformation programs satisfying such restrictions. It seems likely
that such restrictions and algorithms are possible. However they are beyond the scope of this
thesis. A particularly useful result in this direction would be a proof of the following conjecture:

Conjecture 18.1: Given any complete (but not necessarily normal-form) WOL transformation
program, it is possible to encode the same transformation using the composition of two normal-
form WOL programs with size polynomial in the size of the original transformation program.

Unfortunately the investigation of this conjecture is also beyond the scope of this thesis.



19 TRIALS 147

19 Trials

In order to test the methods of implementing transformations described in the previous sections,
a series of trials were carried out using the prototype implementation described in section 16.1.
The trials were based on practical transformation problems arising in the Philadelphia Genome
Center for Chromosome 22 at the University of Pennsylvania, and involved tranforming data
between a variety of molecular biology databases.

Much of the work on optimizing the normalization procedure described in section 17 was in-
spired by these trials, and many the optimizations were incorporated in the prototype. Unfortu-
nately there was not sufficient time available to re-implement the normalization program using
the optimized data-structures described in section 17, which would have lead to considerable
improvements in performance. However the performance improvements yielded by such data-
structures would have been relatively linear, so that the trials carried out with the prototype
implementation still provide a good measure of the relative performance of the system with
different transformation programs.

As already mentioned, the prototype implementation used a restricted form of the WOL lan-
guage, WOL++, in which object identities were simulated using Skolem functions and identity-
attributes [24]. In order to get an accurate idea of how the system would perform on the full
WOL language, it was therefore necessary to write transformation programs in such a way the
the identity attributes and Skolem function applications closely mimicked the proposed use of
object identities in WOL. However an added benefit of the prototype implementation was that
we could experiment with transformations without using identity, and thus get a measure of the
effect that identities have on the performance of the normalization algorithm and the generated
transformation programs.

The transformation trials concentranted on transformations from GDB [34] to the Philadelphia
Genome Center for Chromosome 22’s local laboratory notebook database, Chr22DB, and from
Chr22DB to a local database, ACe22DB at the Sanger Centre based in Cambridge, England.
GDB is an archival database maintained at Johns Hopkins University based on the Sybase
relational database system. We will concentrate on describing the Chr22DB to ACe22DB trans-
formations, since these are structurally more interesting, and since the investigation of different
implementations and their relative performance was most thorough for these transformations.

19.1 Transforming from ACe to Chr22DB

ACe22DB is the laboratory notebook database for the chromosome 22 mapping effort at the
Sanger Centre, Cambridge, England, and Chr22DB is the laboratory notebook database for the
Philadelphia Genome Center for Chromosome 22. Both of these databases store experimental
data and sequencing information on Chromosome 22 generated at the sites, as well as data
imported from other sites and archival databases. These two centers are working on the mapping
of the chromosome 22 of the Human Genome. The databases are used in planning experiments
as well as in the mapping of the genome. So as to reduce duplicated effort the two sites are



148 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

collaborating and attempting to share their existing data. Unfortunately the two databases
are very different, being based on different and incompatible data-models, and on differing
interpretations of the data and how it should be structured.

The ACe22DB database uses the ACeDB data-model and DBMS. ACeDB represents data in
tree-like structures with object identities providing a means of cross-referencing between these
trees. In ACeDB data structures are often deeply nested, and every attribute is either set-valued
or optional. However it does not have support for general variants. Consequently ACeDB is
particularly well suited to representing sparsely populated data or data where many attributes
may be omitted. ACeDB has gained considerable sucess in the molecular biology community,
in part because it is well suited to genomic and molecular biology data, and in part because of
the availability of a variety of popular tools for viewing and analyzing such data.

The Chr22DB database is implemented using Sybase, a commercial relational database system
augmented with system-generated identities and triggers for enforcing constraints.

A Very Short Biology Lesson

Before proceeding to describe the transformation from ACe22DB to Chr22DB, it is perhaps
worthwhile to digress briefly in order to explain enough biology to understand the examples.
For a more in-depth explanation of the molecular biology and genetics involved the reader is
recommend to consult [20].

A chromosome consists of a long double-stranded molecule of deoxyribonucleic acid (DNA),
each strand of which is in turn made up of a string of nuclides of bases. There are four different
possible bases, named A, C, G and T, which are arranged in complementary pairs along the
DNA molecule: A’s opposite T’s and C’s opposite G’s. Consequently a chromosome may be
represented as a long string over the alphabet {A,C,G, T}. The ultimate goal of the Human
Genome Project is to sequence the twenty four chromosomes that comprise the human genome:
that is to determine the order in which A’s, C’s, G’s and T’s occur in each chromosome (about
3 billion base pairs). Unfortunately technology does not yet exist to sequence intervals of DNA
consisting of more than a few hundred base pairs in one go. Consequently, the Human Genome
Project has set itself the short term goal of mapping the human genome.

The process of mapping a chromosome involves identifying various short “landmark” sequences
of DNA or probes within the chromosome, and determining their relative locations. In order to
map a chromosome, it is first cut into various random, overlapping pieces of a manageable size
(between 50,000 and 1 million bases) using various enzymes. These fragments of DNA are then
tested to see if they contain certain probes as subsequences. If two fragments contain the same
probe it can be deduced that they overlap, and this information can be used in order to find
the relative order of the fragments, and the possition of the probes on the chromosome. This
process is illustrated in figure 18.6

The data we will be dealing with in our transformations are for a kind of probe known as
6This figure was made by David Searls



19 TRIALS 149

. . . ATGGCTTATGGCTTATGCGGGCTTATGCTATC . . .

Figure 18: Physical Mapping of a Chromosome

sequence tag sites (STS’s). An STS is an interval of DNA which is identified by a pair of oligos
or primers, which are very short sequenced intervals of DNA representing the two ends of the
STS. One can test whether an STS is a subsequence of a DNA interval by attempting to induce
a chemical reaction called amplification by polymerase chain reaction (PCR amplification) on
the interval in the presence of the pair of primers of the STS. A PCR-amplification reaction
involves several distinct stages, each carried out at different temperatures. The reaction will
only be sucessful if the DNA interval contains the STS.

(#STS: {(#name: str,
#locus_symbol: str,
#STS_length_lo:~ int,
#STS_length_hi:~ int,
#oligo1: str,
#oligo2: str,
#id: Id,
#annealing_temp_time:~ str

)},
#STS_YAC: {(#id: Id,

#yac: str,
#result: str

)}
);

Figure 19: Type of view of Sybase database representing STS’s

In order to store and reproduce fragment of DNA or probe it is inserted into an artificially
produced chromosome known as a vector. A vector is formed by taking a chromosome from
some small organism, such as yeast or bacteria, spliting it, and inserting the stretch of DNA
of interest. The vector is then put back into the host organism, which will reproduce, thus
reproducing the artificially inserted DNA. The process of reproducing fragments of DNA of



150 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

interest in this manner is called cloning. The most common kind of vector, now used almost
exclusively in human genome centers, is a yeast artificial chromosome (YAC). YACs have taken
over from bacteria-based vectors because they can support much longer stretches of cloned DNA.

The data stored about a particular STS includes the sequences of the two primers of the STS
and information about the origins of the primers, the name of the STS and the laboratory from
which named it, the experimental conditions for each stage of the PCR amplification associated
with the STS and the expected outcome of the PCR reaction, and cross references to various
archival databases such as GDB. In addition data is stored on the YACs which were tested to
see if their cloned DNA inserts contained the STS, and the results of the tests.

primitive srcdata == (
#STS: {(#name: "stD22S43",

#locus_symbol: "D22S43",
#STS_length_lo: <#some: 103>,
#STS_length_hi: <#some: 103>,
#oligo1: "GTTCTGGGGAGTGGAGACTC",
#oligo2: "TAACTGGGCTCTGATTCACC",
#id: 1358,
#annealing_temp_time: <#some: "60C">)},

#STS_YAC:{(#id: 1358,
#yac: "M1829:g-9",
#result: "negative"),

(#id: 1358,
#yac: "M1925:g-12",
#result: "positive")}

);

Figure 20: Sample STS and YAC data for Chr22DB

The ACe22DB and Chr22DB Schemas

Rather than taking a schema to be a set of separate class definitions, the WOL++ proto-
type assumed that each database schema consisted of a single type: a tuple with an element
for each class or table in the database. Figure 19 shows the type of the view of Chr22DB
representing STS data. There are two tables representing STS’s and YAC’s. The two oligos
determining an STS are represented by the attributes #oligo1 and #oligo2 which store their
sequences as strings (e.g. “ACGGCTCGC...”). The notation :~ represents an optional at-
tribute, so #STS_length_lo:~ int can be considered to be a short hand for #STS_length_lo:
<|none:(), some: int|>. Some sample source data for this schema is shown in figure 20.

The type of the target ACe database is shown in figure 19.1. Here the type constructor
ftype(f_sts) represents the type of the range of the Skolem function f_sts: the actual type
used to implement such Skolem functions is dependent on the database system, (strings in the



19 TRIALS 151

(#STS: {(#key: ftype(f_sts),
#GDB_id:~ str,
#Oligo_1:~ ftype(f_oligo),
#Oligo_2:~ ftype(f_oligo),
#STS_length:~ (#1: int, #2:~ int),
#Annealing_temp_time:~ str,
#Phil_positive_YAC:~ ftype(f_yac),
#Negative_YAC:~ f_type(f_yac)

)},
#YAC: {(#key: ftype(f_yac),

#Phil_positive_STS:~ str,
#Negative_STS:~ str

)},
#GDB_id: {( #key: str,

#locus_symbol:~ str,
#Positive_STS:~ ftype(f_sts)

)},
#Oligo: {( #key: ftype(f_oligo),

#sequence:~ str,
#STS1:~ ftype(f_sts),
#STS2:~ ftype(f_sts)

)}
)

Figure 21: Type of ACe22DB schema representing STS’s

case of ACeDB), but for type-checking purposes each Skolem function is considered to have its
own distinct type. In fact these types may be considered to correspond to the classes of the
database. In ACe each class has an implicit #key attribute which is required, and all other
attributes are either optional or set valued. Figure 19.1 shows the translation of an ACe schema
into the nested relational model: an actual ACe schema has a tree-like structure, as shown in fig-
ure 19.1. The left-most labels, preceded by question-marks, in this schema represent the classes
of the schema. An “external reference” to an object of some class from within an object of
another class, is marked by the class name followed by the keyword XREF. The keyword UNIQUE
is used to mark single valued attributes, and all the other labels mark attributes or types at
various levels of nesting. There is, in addition a interdependency between attributes on the same
line of an ACe schema: for example the second integer in the #STS_length tuple can not be
defined unless the first integer in the tuple is also defined.



152 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

//#STS#

?STS General GDB_id ?GDB_id XREF Positive_STS // use for D numbers
PCR Oligo_1 ?Oligo XREF STS1

Oligo_2 ?Oligo XREF STS2
STS_length UNIQUE Int UNIQUE Int
Annealing_temp_time ?Text ?Text

Positive Phil_positive_YAC ?YAC XREF Phil_positive_STS
Negative_results_here
Negative Negative_YAC ?YAC XREF Negative_STS

//#YAC#

?YAC Positive Phil_positive_STS ?STS XREF Phil_positive_YAC
Negative_results_here
Negative Negative_STS ?STS XREF Negative_YAC

?GDB_id locus_symbol ?Text
Positive Positive_STS ?STS XREF GDB_id

//#Oligo#

?Oligo Sequence UNIQUE Text // verbatim sequence - useful
STS STS1 ?STS XREF Oligo_1

STS2 ?STS XREF Oligo_2

Figure 22: ACe Schema for the ACe22DB Database

The Transformation Programs

Various different forms were tried for writing the transformation programs from Chr22DB to
ACe22DB. These divided into two basic types: “direct” programs and “external-reference” pro-
grams. The transformation clauses of the direct version were all already in partial normal-form:
that is, they contained no target atoms in their bodies. Consequently normalizing the direct ver-
sions of the program involved no sequences of multiple unfoldings, and resulted in the smallest
possible number of normal form clauses. The time taken to normalize direct programs shows us
how much time the system is taking on tasks such as parsing, type-checking, converting clauses
to semi-normal form, building description clauses and so on. In a sense this provides a upper
bound on the performance we might hope to get out of the system.

The external reference versions of the program included the various external reference constraints
of the ACe schema, and used these to generate many of the attributes of certain classes, rather
than deriving them directly from the source database. These version of the program lead to a
considerable number of unfoldings in order to build partial normal form clauses, and also to a



19 TRIALS 153

larger resulting number of clauses.

In addition the programs were tried using system generated Skolem functions and using exter-
nally defined functions in order to generate key attributes. Unlike Skolem functions, the nor-
malization algorithm makes no assumptions about whether or not an externally defined function
is injective. If f is an externally defined function then a clause can contain atoms X = f(Y)
and X = f(Z) where Y and Z are distinct variables, whereas, if f were a Skolem function the
system would force the variables Y and Z to be unified into a single variable. Versions of the
program using external functions but with additional constraints representing that the external
functions were injective were also tried, in order to test whether the observed differences be-
tween the performance of the system with programs based on Skolem functions and those based
on external functions were indeed due to the injectivity of Skolem functions, and not due to
implementational differences between the two.

The following is the WOL++ code used to implement the direct version of the transformation
using Skolem functions.

% Function symbol declarations

fun f_oligo;
fun f_sts;
fun f_yac;

KEY
X = Y <== X(#id = I) in #C22_STS, Y(#id = I) in #C22_STS;

KEY
X = Y <== X(#id = I, #yac = A) in #C22_STS_YAC,

Y(#id = I, #yac = A) in #C22_STS_YAC;

KEY
ERROR

<== (undef( #STS_length_lo ),
#STS_length_hi = X) in #C22_STS;



154 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

% TRANSFORMATIONS
% Required fields in C22_STS

(#key = f_sts(N, I),
#GDB_id = N,
#Oligo_1 = f_oligo(O1),
#Oligo_2 = f_oligo(O2)) in #STS
<==

(#name = N,
#oligo1 = O1,
#oligo2 = O2,
#id = I) in #C22_STS;

% Optional fields in C22_STS

(#id = f_sts(N, I),
#STS_length = (#1 = LO, #2 = HI) ) in #STS
<==

(#id = I,
#name = N,
#STS_length_lo = LO,
#STS_length_hi = HI) in #C22_STS;

(#id = f_sts(N, I),
#STS_length = (#1 = LO) ) in #STS
<==

(#id = I,
#name = N,
#STS_length_lo = LO) in #C22_STS;

% Oligo

(#key = f_oligo(S1),
#sequence = S1,
#STS1 = f_sts(N, I)) in #Oligo
<==

(#id = I,
#name = N,
#oligo1 = S1) in #C22_STS;

(#key = f_oligo(S2),
#sequence = S2,
#STS2 = f_sts(N, I)) in #Oligo
<==

(#id = I,
#name = N,
#oligo2 = S2) in #C22_STS;



19 TRIALS 155

% YAC

(#key = f_yac(S, Y),
#Phil_positive_STS = f_(N, S)) in #YAC
<==

(#id = S,
#yac = Y,
#result = "positive") in #C22_STS_YAC,
(#id = S,
#name = N) in #C22_STS;

(#key = f_yac(S, Y),
#Negative_STS = f_sts(N, S)) in #YAC
<==

(#id = S,
#yac = Y,
#result = "negative") in #C22_STS_YAC,
(#id = S,
#name = N) in #C22_STS;

% GDB_id

(#key = N,
#locus_symbol = L,
#Positive_STS = f_sts(N, I)) in #GDB_id
<==

(#name = N,
#locus_symbol = L,
#id = I) in #C22_STS;

This code involves a variety of notations that require explanation: statements of the form
fun f_sts; are declarations of Skolem functions; lines starting with a % are comments, and the
atom ERROR represents an invalid database state, and is equivalent to the atom False in WOL.
Further the code uses composite terms: the term X(#id = I, #yac = A) may be considered
as shorthand for the term X together with the atoms X.#id = I, and X.#yac = A. In general
a composite term consists of a term followed by a list of atoms enclosed in paranthesis. The
value of a composite term is the same as the value of its leading term, but it is also taken as
asserting the following atoms. Further if an un-qualified attribute name occurs in the atom list
of a composite term, then it is taken as refering to an attribute of the leading term. The leading
term of a composite term may also be omitted, in which case it is assumed to be an implicit
variable. For example the atom

(#name = N,
#locus_symbol = L,
#id = I) in #C22_STS

is shorthand for the atoms _X.#name = N, _X.locus_symbol = I, _X.#id = I and _X in #C22_STS,



156 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

where _X is a system-generated variable.

For comparison the following version of the tranformation program makes use of external refer-
ence constraints, and of externally defined functions in order to generate keys.

% Function symbol declarations

fun f_oligo;
external f_YacName: str = "YacName( #1 )";
external f_StsKey: str = "StsKey( #1, #2 )";

%SOURCE KEY DEPENDENCIES

KEY
X = Y <== X(#id = I) in #C22_STS, Y(#id = I) in #C22_STS;

KEY
X = Y <== X(#id = I, #yac = A) in #C22_STS_YAC,

Y(#id = I, #yac = A) in #C22_STS_YAC;

KEY
ERROR <== (undef( #STS_length_lo ),

#STS_length_hi = X) in Src.#C22_STS;

% Same thing can’t be an oligo1 and an oligo2

KEY
ERROR <==

(#oligo1 = S) in #C22_STS, (#oligo2 = S) in #C22_STS;

% f_StsKey is one-to-one
KEY
X = Y <==

X(#id = I1, #name = N1) in #C22_STS,
Y(#id = I2, #name = N2) in #C22_STS,
f_StsKey(N1, I1) = f_StsKey(N2, I2);

% f_YacName is one-to-one
KEY
X = Y <==

(#yac = X) in #C22_STS_YAC,
(#yac = Y) in #C22_STS_YAC,
f_YacName(X) = f_YacName(Y);



19 TRIALS 157

% #yac is a key for #C22_STS_YAC
KEY
X = Y <== X(#yac = A) in #C22_STS_YAC,

Y(#yac = A) in #C22_STS_YAC;

% XREF

(#key = K, #Phil_positive_YAC = Y) in #STS <==
(#key = Y, #Phil_positive_STS = K) in #YAC;

(#key = K, #Negative_YAC = Y) in #STS <==
(#key = Y, #Negative_STS = K) in #YAC;

(#key = S, #GDB_id = G) in #STS <==
(#key = G, #Positive_STS = S) in #GDB_id;

(#key = S, #Oligo_1 = O) in #STS <==
(#key = O, #STS1 = S) in #Oligo;

(#key = S, #Oligo_2 = O) in #STS <==
(#key = O, #STS2 = S) in #Oligo;

% TRANSFORMATIONS

% STS

(#key = f_StsKey(N, I),
#STS_length = (#1 = LO, #2 = HI) ) in #STS
<==

(#id = I,
#name = N,
#STS_length_lo = LO,
#STS_length_hi = HI) in #C22_STS;

(#key = f_StsKey(N, I),
#STS_length = (#1 = LO) ) in #STS
<==

(#id = I,
#name = N,
#STS_length_lo = LO,
undef( #STS_length_hi )) in #C22_STS;



158 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

(#key = f_StsKey(N, I),
#Annealing_temp_time = A) in #STS
<==

(#id = I,
#name = N,
#annealing_temp_time = A) in #C22_STS;

% Oligo

(#key = f_oligo( S1 ),
#Sequence = S1,
#STS1 = f_StsKey(N, I)) in #Oligo
<==

(#id = I,
#name = N,
#oligo1 = S1) in #C22_STS;

(#key = f_oligo( S2 ),
#Sequence = S2,
#STS2 = f_StsKey(N, I)) in #Oligo
<==

(#id = I,
#name = N,
#oligo2 = S2) in #C22_STS;

% YAC

(#key = K,
#Phil_positive_STS = f_StsKey(N, S)) in #YAC
<==

(#id = S,
#yac = Y,
#result = "positive") in #C22_STS_YAC,

K = f_YacName(Y),
(#id = S,
#name = N) in #C22_STS;

(#key = K,
#Negative_STS = f_StsKey(N, S)) in #YAC
<==

(#id = S,
#yac = Y,
#result = "negative") in #C22_STS_YAC,

K = f_YacName(Y),
(#id = S,
#name = N) in #C22_STS;



19 TRIALS 159

% GDB_id

(#key = N,
#locus_symbol = L,
#Positive_STS = f_StsKey(N, I)) in #GDB_id
<==

(#name = N,
#locus_symbol = L,
#id = I) in #C22_STS;

The lines starting with the keyword external are external function declarations. For example
the declaration

external f_YacName: str = "YacName( #1 )";

declares f_YacName to be a function symbol with range type str. Applications of f_YacName
are not interpreted by the normalization algorithm, but are translated to the CPL code of the
string of the external declaration. For example a term f_YacName(X) would be translated to
the CPL expression YacName(X).

Figure 23 compares some of the various programs used to implement the Chr22DB to ACe22DB
transformation. The STS.direct program was a direct implementation of the transformation
using externally defined functions, while the STS.dirid program is a direct version using Skolem
functions. The STS.xref, STS.constr and STS.id versions of the program all make use of the ACe
external reference constraints in order to instantiate the target tables. The STS.xref program
uses external functions to generate keys, while the STS.constr program augments STS.xref
with constraints asserting that the external functions are injective. The STS.id program uses
Skolem functions to generate identities for each class, and, off the various programs, is the best
approximation to a transformation program implemented using the full version of WOL.

The second column of the chart shows the time taken by the WOL++ implementation to parse,
type-check and normalize the transformation programs and then to generate the corresponding
CPL programs. The implementation was written using Standard ML of New Jersey. The times
quoted were measured using the unix timex utility, and are the “user” times, that is the times
taken by the process, rather than the “real” times which included other system activity and were
generally about ten percent longer. The third column reprents the number of CPL primitive
declarations in the resulting CPL program, and thus provide a measure of the size of the CPL
program. In general there was one CPL primitive generated by each normal-form clause, plus
some primitive handling Skolem functions, so this figure also provides a measure of the size of
the normal-form WOL++ transformation program. The last column shows the time taken to
load the resultant program into CPL and run it on some test data.

One at first surprising feature of these results is that the CPL and normal form programs
generated by the external reference versions of the transformation are much larger than those
generated by the direct versions. The reason for this is that there are more clauses defining
each classes in the external reference versions: there are three clauses for the class #STS in



160 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE

Program Normalizing
WOL++ Time

Number of CPL
Primitives

Compiling CPL
Time

STS.direct 5:19.61 61 1:59.02
STS.dirid 5:33.63 37 55.94
STS.xref 1:53:32.70 515 36:11.74
STS.constr 35:24.14 233 4:26
STS.id 37:28.16 205 10:33.01

Figure 23: Comparison of performance of various versions of the Chr22DB to ACe22DB trans-
formation program

the STS.dirid program, while there are eight in the STS.constr program. These clauses can
be combined in various ways in order to generate equivalent but destinct normal-form clauses.
Because the attributes of the target classes are all optional, there are also normal-form clauses
that only describe parts of a target value, constructed using subsets of these clauses. Having
many alternative ways of deriving the same value in a target database is reflected by having
many normal-clauses for the same class in the normalized program.

Another notable feature of these results is that constraints, and particularly a notion of identity,
are essential in order to keep the performance of the system tolerable. The external reference
version of the program without constraints took almost four times as long to normalize as the
version with constraints, and this problem was found to become more severe when dealing with
larger programs. An advantage of the full WOL language is that it imposes identity constraints
on the source and target classes in a natural way, and because the identity is treated separately
form other constraints, it can be implemented in a more efficient manner.

The times for compiling CPL code shown in the last column of figure 23 were in fact the times
for the second WOL++ to CPL translation that was implemtmented. The first version of the
translation created a CPL primitive corresponding to each normal-form clause, and then a CPL
primitive for each target classes unioning the values generated by the relevent clauses. For
example suppose we had a normal form program:

X ∈ C, X.#a = Y, X.#b = Z ⇐= W ∈ D, W.#a = X, W.#b = Z;
X ∈ C, X.#a = Y, X.#b = Z ⇐= W ∈ E, W.#a = X, W.#c = Z;
X ∈ C, X.#a = Y, X.#b = Z ⇐= W ∈ F, W.#a = X, W.#d = Z;

where C is a target class and D, E and F are source classes. This would have been translated
into the CPL program

primitive mk_C_1 == \S =>
{ (\#a:Y, #b:Z)| (#a:\Y, #b\Z) <- S.#D };

primitive mk_C_2 == \S =>
{ (\#a:Y, #b:Z)| (#a:\Y, #c\Z) <- S.#E };

primitive mk_C_3 == \S =>
{ (\#a:Y, #b:Z)| (#a:\Y, #d\Z) <- S.#F };



19 TRIALS 161

primitive mk_C == \S =>
(mk_C_1 @ S) + (mk_C_2 @ S) + (mk_C_3 @ S);

The size of the last union primitive is linear in the number of clauses in the normal form program.
However it was found that the time taken to compile load primitive declarations of this form
in CPL was non linear in the size of the declaration. Consequently the time taken to compile
the CPL generated by the STS.dirid program (37 clauses) using this first translation was 55
seconds, while the time for the STS.id program (205 clauses) was 51 minutes, and the time for
the STS.xref program (515 clauses) was over five hours. Investigations showed that the main
time sinkhole in the CPL loading process was in fact the time taken to type check expressions:
the type-checking algorithm was clearler not designed to handle expressions of this size.

This problem was avoided by constructing the primitives generating a class in a “ladder”, with
each primitive unioning the values generated by one normal-form clause with the value of an
application of the primitive before. For example, using the second translation, the above normal-
form program would yield the CPL program

primitive mk_C_1 == \S =>
{ (\#a:Y, #b:Z)| (#a:\Y, #b\Z) <- S.#D };

primitive mk_C_2 == \S =>
{ (\#a:Y, #b:Z)| (#a:\Y, #c\Z) <- S.#E } + (mk_C_1 @ S);

primitive mk_C_3 == \S =>
{ (\#a:Y, #b:Z)| (#a:\Y, #d\Z) <- S.#F } + (mk_C_1 @ S);

In this case the size of each primitive declaration was constant (and small), yielding the somewhat
improved times shown in figure 23.



162 PART IV. IMPLEMENTATION AND TRIALS OF THE WOL LANGUAGE



163

Conclusions and Further Work

Database transformations arise from a wide variety of applications, and many approaches to
such transformations have been proposed. Some of the more significant work in this area was
surveyed in Part I. However existing approaches tend to focus on specific applications, and
deal with restrictive data-models, rather than looking at the problems of performing general
transformations between databases expressed using complex and heterogeneous data-models.
([1] is a partial exception, but deals with a limited data-model which can not express recursive
or arbitrarily deeply nested data-structures). Further most existing work concentrates on the
effect of transformations on database schemas and largely ignores the corresponding effects of
transformations on the underlying data: at best these aspects of a transformation are described
informally, and often they are entirely ambiguous. This is a serious problem with such work,
since, as we have seen, there may be many ways that a particular transformation at the schema
level can be reflected on the underlying data. In order for some work on database transforma-
tions to be meaningful, it is essential that the effects of the transformations considered on the
underlying data be properly defined.

Some existing work has also focused on the problems of obtaining measures of correctness for
database transformations [23, 30]. This work attempts to classify transformations in terms
of whether they preserve the information capacity of the underlying databases. However the
applicability of such notions to models involving object-identities or recursive data-structures
has been curtailed by the lack of a proper understanding of the information capacity of such
models. In practice, the utility of such notions of correctness is limited by the interaction of
transformations and constraints: it is possible for a database transformation to be information
preserving or “correct” because of the presence of some implicit constraints on the databases
involved, but not to be recognized as such because the constraints have not been expressed,
and may not be expressible in the relevant data-models. Further, it is frequently the case that
transformations are selective and only deal with a part of a source database. Established notions
of correctness are clearly to restrictive to be used in such cases.

We have argued that, in order to reason about the correctness, or relative correctness, of database
transformations, it is necessary to have a precise understanding of the information capacity of the
underlying data-models, and to have a formalism in which we can express both transformations



164 CONCLUSIONS AND FURTHER WORK

and general database constraints, and which allows us to reason about the interactions between
the two.

20.2 Contributions

In part II of this thesis we gave a detailed analysis of the information capacity of data-models
involving object identity. This is a problem that has arisen frequently in the literature, but
had not, to the author’s knowledge, previously been properly explored. We argued that the
information capacity of a data-model coincides precisely with the observational properties of
instances of that model, and consequently is dependent on the language or interface available
for querying the model.

We showed that, given a reasonably expressive query language equipped with a predicate for
testing whether two object identities were equal, database instances are indistinguishable if
and only if they are isomorphic. However it is doubtful whether object-identities should be
considered to be directly comparable in this manner, and seems that such comparisons force us
to distinguish between structures which intuitively represent the same data. Next we showed
that, if a query language does not support any means of directly comparing object identities,
then instances are indistinguishable if and only if they are bisimilar. However we proved that,
in general, to test for bisimilarity of individual values in a database requires time bounded in
the size of the database, and consequently that bisimulation does not provide an adequately
efficient means of comparing values in a database. Finally we showed that useful observational
indistinguishability relations lying between these two extremes can be derived from systems
of keys, and that, if we restricted our attention to acyclic systems of keys, then the resulting
observational equivalence relations on values can be efficiently computed.

In Part III we presented a declarative language, WOL, for expressing database transformations
and constraints. The language is based on a data-model supporting nested set, record and variant
constructors, as well as object-identities, and in section 15 we showed how it could be extended
to data-models dealing with alternative collection types such as bags and lists. Consequently the
data-model is sufficiently general that data representable in other established data-models can be
embedded in it in a natural way. WOL can be used to express general structural transformations
on databases, and also a wide variety of database constraints, including those normally supported
by established data-models. Further, since WOL has a precise, formally defined semantics, it
allows us to formally reason about the interactions between transformations and constraints.
The syntax of WOL is based on Horn clause logic, but allows us to express partial specifications
of large and complex data-structures, and therefore makes the programming of transformations
and constraints over such data-structures feasible.

We presented a methodology for implementing a significant class of WOL transformation pro-
grams by first manipulating them into a normal form and then translating the normal-form
transformation program into some underlying database programming language such as CPL.
The restrictions on WOL programs necessary to make such implementation possible were rela-
tively general and easy to check. In section 17 we presented a series of optimizations necessary



CONCLUSIONS AND FURTHER WORK 165

in order to make this normalization process practically feasible, and in section 18 we showed
that, by introducing intermediate data-structures and using two-stage transformations, potential
exponential growth in the size of normalized transformation programs on databases involving
multiple variant types can be avoided. In section 19 we described a prototype implementation
based on a restricted version of the WOL language, and described our experiences with trials of
this system.

20.3 Further Work

Fortunately there remain many questions related to the work of this thesis to which I have not
yet been able to find satisfactory answers, many ideas that I have not yet properly explored,
and a great deal of work that was left undone. Consequently it is necessary to consider these
things to be further work, and to hope that I or another interested researcher will be able to
investigate them at some point in the future. Some of the more immediate or more significant
items of further work are described bellow.

In section 11 we attempted to define an alternative model for instances, based on regular trees,
which more closely captured the observable properties of instances (assuming no means of di-
rectly comparing object identities). Such models had been proposed previously, for example in
[2] but the details had not been presented. As was apparent in section 11 modeling unordered
collections, such as sets or bags, using regular trees is somewhat difficult and unnatural: it
requires the definition of a complex notion of equivalence, such as bisimulation, on top of the
standard representation of regular trees. Consequently it is not clear that the regular-tree based
model is satisfactory, and the problem of how to construct a natural mathematical model for
the observable properties of instances remains open. It is my belief that non-well-founded sets
might be used to provide such a model, and that this requires further investigation.

Section 19 described trials carried out with a prototype implementation of a restricted version of
the WOL language (WOL++). It is clear that, in order to further test and validate these ideas,
a full implementation of the WOL language incorporating all the optimizations of section 17
is desirable. Further trials, both of the existing prototype and of a future full version of the
language, are also necessary. In addition the syntax of the WOL language presented here is
somewhat cumbersome, and it would valuable to establish syntactic enhancements to the lan-
guage in order to make transformation programs easier to develop and read. Such enhancements
for the restricted language, WOL++, proved to be of great utility.

The work on two-stage transformations presented in section 18 is a comparatively recent devel-
opment, and leaves a number of unanswered questions. Most notable is the need to either prove
or disprove the conjecture 18.1: that it is always possible to rewrite a transformation program as
an equivalent two-stage normal-form transformation program with size linear in the size of the
original program. If this conjecture turns out not to be true in general then it would be desirable
to find useful side-conditions or restrictions sufficient to make it true. Further, it seems clear
that it should be possible to automate the process of generating two-stage transformations, and
the necessary intermediary data-structures, from a single stage transformation program. Further



166 CONCLUSIONS AND FURTHER WORK

investigations and the development of suitable algorithms is necessary.

Finally there are issues related to the use of data-models supporting finite extents of object-
identities that deserve examination. In section 9.2 we showed that it was possible to compute
bisimulation relations on values of instance using only structural recursion over sets. This result
was surprising because bisimulation is something that one would normally expect to require
general recursion in order to compute, and indeed would not be decidable in a more general
computational setting. In fact we were saved by the notion of finite extents, and the fact
that all values occurring in a database instance arise from one of the known finite extents
of that instance. A natural question to ask is therefore, what other intuitively recursive or
undecidable functions can be computed on such database instances by using the knowledge of
finite extents? Further what is a natural semantics for recursively defined functions over such
database instances, and how can they be computed in an efficient manner. Initial investigations
into these questions have proved very promising (and, in fact, were described in the proposal
for this thesis). However further investigation is needed.



167

Bibliography

[1] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical Com-
puter Science, 62:3–38, 1988.

[2] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In Pro-
ceedings of ACM SIGMOD Conference on Management of Data, pages 159–173, Portland,
Oregon, 1989.

[3] Serge Abiteboul and Catriel Beeri. On the power of languages for the manipulation of
complex objects. In Proceedings of International Workshop on Theory and Applications of
Nested Relations and Complex Objects, Darmstadt, 1988. Also available as INRIA Technical
Report 846.

[4] Serge Abiteboul and Jan Van den Bussche. Deep equality revisited. In Proc. 4th Inter-
national Conference on Deductive Object-Oriented Databases. Springer-Verlag, 1995. To
appear.

[5] Serge Abiteboul and Richard Hull. IFO: A formal semantic database model. ACM Trans-
actions on Database Systems, 12(4):525–565, December 1987.

[6] F. Bancilhon. Object-oriented database systems. In Proceedings of 7th ACM Symposium
on Principles of Database Systems, pages 152–162, Los Angeles, California, 1988.

[7] J. Banerjee, W. Kim, H. Kim, and H. Korth. Semantics and implementation of schema
evolution in object-oriented databases. SIGMOD Record, 16(3):311–322, 1987.

[8] C. Batini and M. Lenzerini. A methodology for data schema integration in the entity-
relationship model. IEEE Transactions on Software Engineering, SE-10(6):650–663,
November 1984.

[9] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, December 1986.

[10] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In
Proceedings of 3rd International Workshop on Database Programming Languages, Naphlion,



168 BIBLIOGRAPHY

Greece, pages 9–19. Morgan Kaufmann, August 1991. Also available as UPenn Technical
Report MS-CIS-92-17.

[11] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of program-
ming with Sets/Bags/Lists. In LNCS 510: Proceedings of 18th International Colloquium on
Automata, Languages, and Programming, Madrid, Spain, July 1991, pages 60–75. Springer
Verlag, 1991.

[12] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded query lan-
guages. In J. Biskup and R. Hull, editors, LNCS 646: Proceedings of 4th International
Conference on Database Theory, Berlin, Germany, October, 1992, pages 140–154. Springer-
Verlag, October 1992. Available as UPenn Technical Report MS-CIS-92-47.

[13] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merging. In LNCS
580: Advances in Database Technology — EDBT ’92, pages 152–167. Springer-Verlag, 1992.

[14] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIG-
MOD Record, 23(1):87–96, March 1994.

[15] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25:95–169, 1983.

[16] S. B. Davidson, A. S. Kosky, and B. Eckman. Facilitating transformations in a human
genome project database. Technical Report MS-CIS-93-94/L&C 74, University of Pennsyl-
vania, Philadelphia, PA 19104, December 1994.

[17] U. Dayal and H. Hwang. View definition and generalisation for database integration in
Multibase: A system for heterogeneous distributed databases. IEEE Transactions on Soft-
ware Engineering, SE–10(6):628–644, November 1984.

[18] C. Eick. A methodology for the design and transformation of conceptual schemas. In Pro-
ceedings of the 17th International Conference on Very Large Databases, Barcelona, Spain,
pages 25–34, September 1991.

[19] F. Eliassen and R. Karlsen. Interoperability and object identity. SIGMOD Record, 20(4):25–
29, December 1991.

[20] Larry Gonick and Mark Wheelis. The Cartoon Guide to Genetics. Harper Collins, 1991.

[21] N. Hammer and D. McLeod. Database description with SDM: A semantic database model.
ACM Transactions on Database Systems, 6(3):351–386, September 1981.

[22] Dennis Heimbigner and Dennis McLeod. A federated architecture for information manage-
ment. ACM Transactions on Office Information Systems, 3(3), July 1985.

[23] R. Hull. Relative information capacity of simple relational database schemata. SIAM
Journal of Computing, 15(3):865–886, August 1986.



BIBLIOGRAPHY 169

[24] R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object iden-
tifiers. In Proceedings of 16th International Conference on Very Large Data Bases, pages
455–468, 1990.

[25] Richard Hull and Roger King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201–260, September 1987.

[26] W. Kent. The breakdown of the information model in multi-database systems. SIGMOD
Record, 20(4):10–15, December 1991.

[27] Setrag N. Khoshafian and George P. Copeland. Object identity. In Stanley B. Zdonik and
David Maier, editors, Readings in Object Oriented Database Systems, pages 37–46. Morgan
Kaufmann Publishers, San Mateo, California, 1990.

[28] M. Kifer and G. Laussen. F-logic: A higher order language for reasoning about objects,
inheritance, and scheme. In Proceedings of ACM-SIGMOD 1989, pages 46–57, June 1989.

[29] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267–293, September 1990.

[30] R. J. Miller, Y. E. Ioannidis, and R Ramakrishnan. The use of information capacity in
schema integration and translation. In Proc. 19th International VLDB Conference, pages
120–133, August 1993.

[31] R. J. Miller, Y. E. Ioannidis, and R Ramakrishnan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Information Systems, 19, 1994.

[32] A. Motro. Superviews: Virtual integration of multiple databases. IEEE Transactions on
Software Engineering, SE-13(7):785–798, July 1987.

[33] S. Navathe, R. Elmasri, and J. Larson. Integrating user views in database design. IEEE
Computer, 19(1):50–62, January 1986.

[34] P. Pearson, N. Matheson, N Flescher, and R. J. Robbins. The GDB human genome data
base anno 1992. Nucleic Acids Research, 20:2201–2206, 1992.

[35] D. Penney and J. Stein. Class modification in the gemstone object-oriented dbms. SIG-
PLAN Notices (Proc. OOOPSLA ’87), 22(12):111–117, October 1987.

[36] John F. Roddick. Schema evolution in database systems — An annotated bibliography.
SIGMOD Record, 21(4):35–40, December 1992.

[37] A. Rosenthal and D. Reiner. Theoretically sound transformations for practical database
design. In S. T. March, editor, Entity-Relationship Approach, pages 115–131, 1988.

[38] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying interdatabase dependencies in a
multidatabase environment. IEEE Computer, December 1991.



170 BIBLIOGRAPHY

[39] F. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of data models as canonical
models for federated databases. SIGMOD Record, 20(4):44–48, December 1991.

[40] P. Shoval and S. Zohn. Binary-relationship integration methodology. Data and Knowledge
Engineering, 6:225–249, 1991.

[41] Andrea H. Skarra and Stanley B. Zdonik. Type evolution in an object oriented database.
In Bruce Shriver and Peter Wegner, editors, Research Directions in Object Oriented Pro-
gramming, pages 392–415. MIT Press, Cambridge, Massachusetts, 1987.

[42] S. Spaccapietra and C. Parent. Conflicts and correspondence assertions in interoperable
dbs. SIGMOD Record, 20(4):49–54, December 1991.

[43] J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data Base Man-
ager. Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology, Cam-
bridge,CB2 2QH, UK, 1992.

[44] M. Tresch and M. Scholl. Schema transformation without database reorganization. SIG-
MOD Record, 22(1):21–27, March 1993.

[45] Jeffrey D. Ullman. Principles of Database and Knowledgebase Systems I. Computer Science
Press, Rockville, MD 20850, 1989.

[46] S. Widjojo, R. Hull, and D. S. Wile. A specificational approach to merging persistent object
bases. In Al Dearle, Gail Shaw, and Stanley Zdonik, editors, Implementing Persistent Object
Bases. Morgan Kaufmann, December 1990.

[47] S. Widjojo, D. S. Wile, and R. Hull. Worldbase: A new approach to sharing distributed
information. Technical report, USC/Information Sciences Institute, February 1990.

[48] G. Wiederhold and X. Qian. Modeling asynchrony in distributed databases. Proc. 1987
International Conference on Data Engineering, pages 246–250, 1987.

[49] Limsoon Wong. Querying Nested Collections. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, Philadelphia, PA 19104, August 1994.
Available as University of Pennsylvania IRCS Report 94-09.



Index
Abiteboul

observational indistinguishability, 26
rewrite rules, 14

ACe22DB, 147
ACeDB, 148
atoms, 75

caught, 109
range-restricted, see range-restriction
ranked, 125
relatively base, 109
semi-normal form, 84
well-formed, 78
well-typed, 75

attribute labels, 28

bags, 122
base types, 28
Batini, 9, 11
bisimilarity

of instances, 44
of regular trees, 61

characterizing formulae, 98
characterizing systems, 100

acyclic, 100
respecting, 100

Chr22DB, 147
clauses, 78

description, 107
deterministic, 93
equivalent, 82
normal form, 101
partial normal form, 141
satisfaction of, 82
semi-normal form, 85
transformation, 90
unfoldable, 109
well-formed, 78
well-typed, 78

closed expressions, 34

collection types, 122
complete transformation programs, 95
conflict resolution, 9
constraints, 23

source, 90
target, 90

correspondence relations, 43
bisimilarity, 44
consistent, 43

CPL, 131, 159

data-models
for transformations, 17
object-identity based, 28–30
regular-tree based, 62–64

database transformation, see tranformation,
database

Datalog, 110
dependency graph, 53
deterministic clauses, see clauses, determin-

istic

equivalent
clauses, see clauses, equivalent
key specifications, see key specification,

equivalent
extents, 17

GDB, 147
ground type, 32

H-model, 113
Herbrand universe, 113
homomorphism of instances, 31
Hull

information dominance, 19
rewrite rules, 14

Human Genome Project, 129

I-environment, 80
indistinguishability

171



172 INDEX

in SRI(=), 37
information dominance, 19

absolute, 19
calculus, 21
generic, 20
internal, 20

information preserving, see information dom-
inance

instance
object-identity based, 30
regular-tree based, 63

integration
database, 5, 8
schema, 11
user view, 11

isomorphism of instances, 31

K-equivalent, 54
key correspondence, 53
key specifications, 52

consistent instances with, 54
equivalent, 53
well-defined, 52

keyed schema, 54

lists, 122, 123
precedence of elements, 124

meta-data-model, 17
Miller, 19, 22
Motro, 12

N -bounded
instances, 50
values, 50

NavX(C,µ), 97
nested set types, 100, 105
normal form

non-nested, 106
normal form clauses, 101

object identity, 29
observational indistinguishability, 26
optional attributes, 143

PCR amplification, 149
Philadelphia Genome Center for Chromosome

22, 131, 147
primers, 149

query, 34

range-restriction, 77
recursive transformation programs, 112
regular trees, 59–60
rewrite rules, 14

schemas, 28
disjoint, 88
evolution, 5
merging, 9
non-nested, 105
partitioning, 89
transformation, see transformation, schema

semi-normal form
atoms, 84
clauses, 85

simply keyed schema, 54
Skolem functions, 115, 131, 147
source terms, 90
SRI, 31

N -bounded, 50
no equality, 46
SRI(K), 56
with equality, 32–36

STS (sequence tag site), 149
support, 20

target term, 89
term paths, 96
terms, 73

occurences, 77
Tr-transformation, 93
transformation clauses, 90
transformation programs, 92

complete, 95
recursive, 110, 112

transformations
database, 5



INDEX 173

schema, 6
two-stage, 145
Z-generic, 20
Z-internal, 20

type contexts, 74
types, 28

option, 143
typing

of term occurences, 78
of term paths, 96
of WOL terms, 74

Unfold, 108
unfoldable clauses, 109
unfolding sequences, 111

decoration of, 111
unifiers, 108
user views, see views, user

Van den Bussche, 26
variants, 143
views, user, 5

well-defined
key specification, see key specifications,

well-defined
well-formed

atoms, see atoms, well-formed
clauses, see clauses, well-formed

well-typed
atoms, see atoms, well-typed
clauses, see clauses, well-typed

WOL, 23, 69
atoms, see atoms
clauses, see clauses
semantics, 80–83
syntax, 73–78
terms, see terms
typing rules, 74

WOL++, 131, 153

YAC (yeast artificial chromosome), 150

Z-generic transformation, see transformation,
Z-generic

Z-internal functions, 41
Z-internal transformation, see transforma-

tion, Z-internal
Z-permutation, 20


